清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

“What” and “when” predictions jointly modulate speech processing

脑磁图 假字 刺激(心理学) 心理学 感觉系统 神经科学 计算机科学 认知心理学 沟通 语音识别 脑电图 认知
作者
Ryszard Auksztulewicz,Ozan Bahattin Ödül,Saskia Helbling,Annkathrin Böke,Drew Cappotto,Dan Luo,Jan W. H. Schnupp,Lucía Melloni
出处
期刊:The Journal of Neuroscience [Society for Neuroscience]
卷期号:: e1049242025-e1049242025
标识
DOI:10.1523/jneurosci.1049-24.2025
摘要

Adaptive behavior rests on predictions based on statistical regularities in the environment. Such regularities pertain to stimulus contents (“what”) and timing (“when”), and both interactively modulate sensory processing. In speech streams, predictions can be formed at multiple hierarchical levels of contents (e.g. syllables vs. words) and timing (faster vs. slower time scales). Whether and how these hierarchies map onto each other remains unknown. Under one hypothesis, neural hierarchies may link "what" and "when" predictions within sensory processing areas: with lower vs. higher cortical regions mediating interactions for smaller vs. larger units (syllables vs. words). Alternatively, interactions between "what" and "when" regularities might rest on a generic, sensory-independent mechanism. To address these questions, we manipulated “what” and “when” regularities at two levels – single syllables and disyllabic pseudowords – while recording neural activity using magnetoencephalography (MEG) in healthy volunteers (N=22). We studied how neural responses to syllable and/or pseudoword deviants are modulated by “when” regularity. “When” regularity modulated “what” mismatch responses with hierarchical specificity, such that responses to deviant pseudowords (vs. syllables) were amplified by temporal regularity at slower (vs. faster) time scales. However, both these interactive effects were source-localized to the same regions, including frontal and parietal cortices. Effective connectivity analysis showed that the integration of “what” and “when” regularity selectively modulated connectivity within regions, consistent with gain effects. This suggests that the brain integrates “what” and “when” predictions that are congruent with respect to their hierarchical level, but this integration is mediated by a shared and distributed cortical network. Significance statement This study investigates how the brain integrates predictions about the content (“what”) and timing (“when”) of sensory stimuli, particularly in speech. Using magnetoencephalography (MEG) to record neural activity, researchers found that temporal regularities at slower (vs. faster) time scales enhance neural responses to unexpected disyllabic pseudowords (vs. single syllables), indicating a hierarchical specificity in processing. Despite this specificity, the involved brain regions were common across different hierarchical levels of regularities, and included frontal and parietal areas. This suggests that the brain uses a distributed and shared network to integrate “what” and “when” predictions across hierarchical levels, refining our understanding of speech processing mechanisms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
33秒前
科研通AI2S应助科研通管家采纳,获得10
33秒前
老石完成签到 ,获得积分10
40秒前
Jessica应助hu采纳,获得10
51秒前
1分钟前
1分钟前
雨jia完成签到,获得积分10
1分钟前
大个应助鹏哥爱科研采纳,获得10
1分钟前
1分钟前
1分钟前
George发布了新的文献求助10
2分钟前
自然亦凝完成签到,获得积分10
2分钟前
2分钟前
浑续发布了新的文献求助10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
LINDENG2004完成签到 ,获得积分10
2分钟前
3分钟前
Eileen完成签到 ,获得积分0
3分钟前
zzhui完成签到,获得积分10
3分钟前
P_Chem完成签到,获得积分10
4分钟前
浑续完成签到,获得积分10
4分钟前
4分钟前
5分钟前
Jessica发布了新的文献求助10
5分钟前
5分钟前
方白秋完成签到,获得积分0
5分钟前
迷茫的一代完成签到,获得积分10
5分钟前
crazy发布了新的文献求助10
5分钟前
5分钟前
狂野的含烟完成签到 ,获得积分10
6分钟前
6分钟前
yiburongci完成签到,获得积分20
6分钟前
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
6分钟前
Lei完成签到,获得积分10
6分钟前
7分钟前
唐唐完成签到,获得积分10
7分钟前
7分钟前
WaWaQAQ发布了新的文献求助10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664535
求助须知:如何正确求助?哪些是违规求助? 4864753
关于积分的说明 15107992
捐赠科研通 4823177
什么是DOI,文献DOI怎么找? 2582040
邀请新用户注册赠送积分活动 1536144
关于科研通互助平台的介绍 1494545