A multi-scale small object detection algorithm SMA-YOLO for UAV remote sensing images

计算机科学 比例(比率) 形状记忆合金* 人工智能 计算机视觉 目标检测 遥感 对象(语法) 模式识别(心理学) 算法 地图学 地理
作者
Shilong Zhou,Haijin Zhou,Lei Qian
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1) 被引量:6
标识
DOI:10.1038/s41598-025-92344-7
摘要

Detecting small objects in complex remote sensing environments presents significant challenges, including insufficient extraction of local spatial information, rigid feature fusion, and limited global feature representation. In addition, improving model performance requires a delicate balance between improving accuracy and managing computational complexity. To address these challenges, we propose the SMA-YOLO algorithm. First, we introduce the Non-Semantic Sparse Attention (NSSA) mechanism in the backbone network, which efficiently extracts non-semantic features related to the task, thus improving the model's sensitivity to small objects. In the model's throat, we design a Bidirectional Multi-Branch Auxiliary Feature Pyramid Network (BIMA-FPN), which integrates high-level semantic information with low-level spatial details, improving small object detection while expanding multi-scale receptive fields. Finally, we incorporate a Channel-Space Feature Fusion Adaptive Head (CSFA-Head), which fully handles multi-scale features and adaptively handles consistency problems of different scales, further improving the robustness of the model in complex scenarios. Experimental results on the VisDrone2019 dataset show that SMA-YOLO achieves a 13% improvement in mAP compared to the baseline model, demonstrating exceptional adaptability in small object detection tasks for remote sensing imagery. These results provide valuable insights and new approaches to further advance research in this area.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10发布了新的文献求助10
刚刚
1秒前
zz完成签到 ,获得积分10
1秒前
1秒前
研友_8yPeXZ发布了新的文献求助10
1秒前
lezbj99发布了新的文献求助10
2秒前
科研通AI5应助平平幻灵采纳,获得10
2秒前
2秒前
香蕉觅云应助慈祥的寒荷采纳,获得10
3秒前
3秒前
赘婿应助清茶旧友采纳,获得10
4秒前
5秒前
WLWLW应助clientprogram采纳,获得30
7秒前
新帅发布了新的文献求助10
7秒前
66完成签到,获得积分20
7秒前
沉静冰夏完成签到,获得积分10
9秒前
Liu发布了新的文献求助10
9秒前
11秒前
从前慢完成签到 ,获得积分10
11秒前
11秒前
yin完成签到,获得积分10
11秒前
TIANCAI关注了科研通微信公众号
11秒前
fafafa发布了新的文献求助10
12秒前
12秒前
13秒前
waxll0317完成签到,获得积分10
13秒前
13秒前
小半完成签到 ,获得积分10
15秒前
15秒前
anan发布了新的文献求助10
16秒前
123完成签到,获得积分10
16秒前
Hello应助默默采纳,获得10
17秒前
万能图书馆应助123采纳,获得10
17秒前
科研通AI2S应助秋水采纳,获得10
17秒前
fafafa完成签到,获得积分10
18秒前
老实新筠发布了新的文献求助10
18秒前
lezbj99发布了新的文献求助10
19秒前
20秒前
星辰大海应助CiCi采纳,获得10
20秒前
开心向真发布了新的文献求助10
21秒前
高分求助中
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
Determination of the boron concentration in diamond using optical spectroscopy 600
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
A new house rat (Mammalia: Rodentia: Muridae) from the Andaman and Nicobar Islands 500
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
On the Validity of the Independent-Particle Model and the Sum-rule Approach to the Deeply Bound States in Nuclei 220
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4547894
求助须知:如何正确求助?哪些是违规求助? 3978743
关于积分的说明 12319697
捐赠科研通 3647312
什么是DOI,文献DOI怎么找? 2008656
邀请新用户注册赠送积分活动 1044148
科研通“疑难数据库(出版商)”最低求助积分说明 932767