亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Human-Algorithm Collaboration with Private Information: Naïve Advice-Weighting Behavior and Mitigation

建议(编程) 加权 计算机科学 私人信息检索 算法 运筹学 业务 数学 计算机安全 物理 声学 程序设计语言
作者
Maya Balakrishnan,Kris Ferreira,Jordan Tong
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
被引量:1
标识
DOI:10.1287/mnsc.2022.03850
摘要

Even if algorithms make better predictions than humans on average, humans may sometimes have private information that an algorithm does not have access to that can improve performance. How can we help humans effectively use and adjust recommendations made by algorithms in such situations? When deciding whether and how to override an algorithm’s recommendations, we hypothesize that people are biased toward following naïve advice-weighting (NAW) behavior; they take a weighted average between their own prediction and the algorithm’s prediction, with a constant weight across prediction instances regardless of whether they have valuable private information. This leads to humans overadhering to the algorithm’s predictions when their private information is valuable and underadhering when it is not. In an online experiment where participants were tasked with making demand predictions for 20 products while having access to an algorithm’s predictions, we confirm this bias toward NAW and find that it leads to a 20%–61% increase in prediction error. In a second experiment, we find that feature transparency—even when the underlying algorithm is a black box—helps users more effectively discriminate how to deviate from algorithms, resulting in a 25% reduction in prediction error. We make further improvements in a third experiment via an intervention designed to move users away from advice weighting and instead, use only their private information to inform deviations, leading to a 34% reduction in prediction error. This paper has been This paper was accepted by Elena Katok for the Special Issue on the Human-Algorithm Connection. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.03850 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
50秒前
zyb完成签到 ,获得积分10
52秒前
Criminology34应助科研通管家采纳,获得10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Criminology34应助科研通管家采纳,获得10
1分钟前
充电宝应助于祈采纳,获得10
1分钟前
1分钟前
1分钟前
于祈发布了新的文献求助10
1分钟前
klpkyx发布了新的文献求助10
1分钟前
干净的慕蕊完成签到,获得积分10
1分钟前
CipherSage应助火星上的迎天采纳,获得10
1分钟前
HuanChen完成签到 ,获得积分10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
2分钟前
Jasper应助镜湖医庄采纳,获得10
3分钟前
搜集达人应助yr采纳,获得10
3分钟前
由道罡完成签到 ,获得积分10
3分钟前
于祈完成签到 ,获得积分10
3分钟前
时代更迭完成签到 ,获得积分10
3分钟前
4分钟前
pingpinglver发布了新的文献求助10
4分钟前
4分钟前
4分钟前
yr发布了新的文献求助10
4分钟前
4分钟前
Criminology34应助科研通管家采纳,获得20
5分钟前
Criminology34应助科研通管家采纳,获得10
5分钟前
芒芒发paper完成签到 ,获得积分10
5分钟前
英勇的梨愁完成签到 ,获得积分10
5分钟前
FashionBoy应助yr采纳,获得10
5分钟前
充电宝应助懒得取名字采纳,获得10
5分钟前
5分钟前
镜湖医庄发布了新的文献求助10
6分钟前
xxn完成签到 ,获得积分10
6分钟前
6分钟前
6分钟前
罗健完成签到 ,获得积分10
6分钟前
MchemG应助yr采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 891
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5422579
求助须知:如何正确求助?哪些是违规求助? 4537491
关于积分的说明 14157617
捐赠科研通 4454143
什么是DOI,文献DOI怎么找? 2443207
邀请新用户注册赠送积分活动 1434508
关于科研通互助平台的介绍 1411661