Human-Algorithm Collaboration with Private Information: Naïve Advice-Weighting Behavior and Mitigation

建议(编程) 加权 计算机科学 私人信息检索 算法 运筹学 业务 数学 计算机安全 物理 声学 程序设计语言
作者
Maya Balakrishnan,Kris Ferreira,Jordan Tong
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.03850
摘要

Even if algorithms make better predictions than humans on average, humans may sometimes have private information that an algorithm does not have access to that can improve performance. How can we help humans effectively use and adjust recommendations made by algorithms in such situations? When deciding whether and how to override an algorithm’s recommendations, we hypothesize that people are biased toward following naïve advice-weighting (NAW) behavior; they take a weighted average between their own prediction and the algorithm’s prediction, with a constant weight across prediction instances regardless of whether they have valuable private information. This leads to humans overadhering to the algorithm’s predictions when their private information is valuable and underadhering when it is not. In an online experiment where participants were tasked with making demand predictions for 20 products while having access to an algorithm’s predictions, we confirm this bias toward NAW and find that it leads to a 20%–61% increase in prediction error. In a second experiment, we find that feature transparency—even when the underlying algorithm is a black box—helps users more effectively discriminate how to deviate from algorithms, resulting in a 25% reduction in prediction error. We make further improvements in a third experiment via an intervention designed to move users away from advice weighting and instead, use only their private information to inform deviations, leading to a 34% reduction in prediction error. This paper has been This paper was accepted by Elena Katok for the Special Issue on the Human-Algorithm Connection. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.03850 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
余姓懒发布了新的文献求助10
刚刚
eyu发布了新的文献求助10
刚刚
英俊的铭应助bingsu108采纳,获得10
1秒前
powero发布了新的文献求助10
1秒前
呆桃发布了新的文献求助10
2秒前
胡雅琴发布了新的文献求助10
2秒前
songyongjian发布了新的文献求助10
2秒前
3秒前
地平线完成签到,获得积分10
3秒前
大模型应助大师现在采纳,获得10
3秒前
早早入眠完成签到,获得积分10
4秒前
充电宝应助Chase采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
simoncai完成签到,获得积分10
5秒前
6秒前
Owen应助n1gern采纳,获得10
7秒前
赘婿应助缥缈斌采纳,获得10
7秒前
7秒前
地平线发布了新的文献求助10
8秒前
归海一刀完成签到,获得积分10
8秒前
8秒前
hhp发布了新的文献求助10
9秒前
李健应助阔达秋翠采纳,获得10
9秒前
Rinamamiya应助Andy.采纳,获得10
9秒前
genius发布了新的文献求助10
11秒前
yr发布了新的文献求助50
11秒前
科目三应助wisliudj采纳,获得10
13秒前
桐桐应助啦啦啦采纳,获得10
13秒前
汪ke发布了新的文献求助10
13秒前
14秒前
搜索v发布了新的文献求助10
14秒前
炒鸡战士肥海豹完成签到,获得积分10
14秒前
体贴羿发布了新的文献求助10
14秒前
16秒前
阿甘完成签到,获得积分10
16秒前
李健的小迷弟应助siyin采纳,获得10
16秒前
16秒前
17秒前
level完成签到,获得积分10
17秒前
19秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Logical form: From GB to Minimalism 5000
Qualitative Inquiry and Research Design: Choosing Among Five Approaches 5th Edition 2000
Linear and Nonlinear Functional Analysis with Applications, Second Edition 1800
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Biocontamination Control for Pharmaceuticals and Healthcare 2nd Edition 1300
Stereoelectronic Effects 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4201771
求助须知:如何正确求助?哪些是违规求助? 3736647
关于积分的说明 11765799
捐赠科研通 3409145
什么是DOI,文献DOI怎么找? 1870465
邀请新用户注册赠送积分活动 926076
科研通“疑难数据库(出版商)”最低求助积分说明 836359