Human-Algorithm Collaboration with Private Information: Naïve Advice-Weighting Behavior and Mitigation

建议(编程) 加权 计算机科学 私人信息检索 算法 运筹学 业务 数学 计算机安全 物理 声学 程序设计语言
作者
Maya Balakrishnan,Kris Ferreira,Jordan Tong
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
标识
DOI:10.1287/mnsc.2022.03850
摘要

Even if algorithms make better predictions than humans on average, humans may sometimes have private information that an algorithm does not have access to that can improve performance. How can we help humans effectively use and adjust recommendations made by algorithms in such situations? When deciding whether and how to override an algorithm’s recommendations, we hypothesize that people are biased toward following naïve advice-weighting (NAW) behavior; they take a weighted average between their own prediction and the algorithm’s prediction, with a constant weight across prediction instances regardless of whether they have valuable private information. This leads to humans overadhering to the algorithm’s predictions when their private information is valuable and underadhering when it is not. In an online experiment where participants were tasked with making demand predictions for 20 products while having access to an algorithm’s predictions, we confirm this bias toward NAW and find that it leads to a 20%–61% increase in prediction error. In a second experiment, we find that feature transparency—even when the underlying algorithm is a black box—helps users more effectively discriminate how to deviate from algorithms, resulting in a 25% reduction in prediction error. We make further improvements in a third experiment via an intervention designed to move users away from advice weighting and instead, use only their private information to inform deviations, leading to a 34% reduction in prediction error. This paper has been This paper was accepted by Elena Katok for the Special Issue on the Human-Algorithm Connection. Supplemental Material: The online appendix and data files are available at https://doi.org/10.1287/mnsc.2022.03850 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助littleprince采纳,获得10
刚刚
帅气到爆炸的我完成签到,获得积分10
1秒前
1秒前
yueyue完成签到,获得积分20
2秒前
万能图书馆应助eco采纳,获得10
3秒前
Evan123完成签到,获得积分10
4秒前
weirdo发布了新的文献求助10
4秒前
4秒前
纯真的若云完成签到,获得积分10
4秒前
踹脸大妈发布了新的文献求助10
5秒前
Owen应助中午吃什么采纳,获得10
6秒前
6秒前
脑洞疼应助Cc采纳,获得10
6秒前
bkagyin应助weirdo采纳,获得10
7秒前
明研完成签到,获得积分10
7秒前
小小发布了新的文献求助20
8秒前
zk_orange发布了新的文献求助10
9秒前
10秒前
hhh发布了新的文献求助10
10秒前
13秒前
万能图书馆应助Tata采纳,获得10
13秒前
momomo完成签到 ,获得积分10
13秒前
球球完成签到,获得积分10
13秒前
13秒前
2hi完成签到,获得积分10
13秒前
群群发布了新的文献求助10
14秒前
littleprince完成签到,获得积分20
14秒前
学术芽完成签到,获得积分10
15秒前
悟123完成签到 ,获得积分10
15秒前
那么我赢了完成签到 ,获得积分10
16秒前
16秒前
Cc发布了新的文献求助10
18秒前
踹脸大妈完成签到,获得积分10
18秒前
球球发布了新的文献求助10
18秒前
zhaozi发布了新的文献求助30
18秒前
18秒前
无聊的寒烟完成签到,获得积分10
19秒前
20秒前
群群完成签到,获得积分10
20秒前
zihuan发布了新的文献求助10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789633
求助须知:如何正确求助?哪些是违规求助? 3334559
关于积分的说明 10270626
捐赠科研通 3050998
什么是DOI,文献DOI怎么找? 1674381
邀请新用户注册赠送积分活动 802549
科研通“疑难数据库(出版商)”最低求助积分说明 760761