Research on postharvest tomato freshness recognition method based on RGB‐S and ResNet34

采后 RGB颜色模型 鉴定(生物学) 计算机科学 频道(广播) 人工智能 数学 园艺 植物 生物 计算机网络
作者
Yu-Hua Huang,Juntao Xiong,Xinjing Jiang,Jiaxuan Yang,Mingyue Zhang
出处
期刊:Journal of Food Science [Wiley]
卷期号:90 (3)
标识
DOI:10.1111/1750-3841.70063
摘要

The accurate identification of postharvest tomato freshness is critical for fruit growers to plan their postharvest storage, transportation, and wholesale processes. In this study, a method based on improved frequency-tuned (FT) visual saliency detection and ResNet34 model is proposed for nondestructive identification of postharvest tomato freshness. The L*, Y, and H components were extracted as effective features to be introduced into the original FT algorithm by performing color space analysis and image processing operations on tomatoes variation images with different freshness levels. The improved FT algorithm was utilized to obtain visual saliency maps, which were combined with the corresponding RGB image information to form four-dimensional data. The ResNet model was improved as a four-channel model to realize the classification of tomato freshness. The experimental results show that the accuracy, precision, and recall of the method are 98.38%, 98.69%, and 98.32%, respectively. The detection speed of a single image is 0.0326 s. The results of the study demonstrated that the proposed method for recognizing postharvest tomato freshness has effectiveness and real-time performance and can provide technical support to the fruit and vegetable production and processing industries and consumers when shopping for fresh tomatoes. PRACTICAL APPLICATION: This study introduces a method based on computer vision for the rapid and accurate assessment of postharvest tomatoes freshness. This nondestructive approach permits growers to ascertain the freshness of their produce without causing damage, thereby markedly enhancing postharvest management practices such as storage, transportation, and wholesale distribution. By optimizing handling processes, this method reduces spoilage for producers and ensures that consumers receive high-quality produce. The study's findings are intended to advance food science, with specific applications in postharvest technology and quality control.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形初曼发布了新的文献求助10
刚刚
深情安青应助稳重的青旋采纳,获得10
2秒前
脑洞疼应助林读书采纳,获得10
2秒前
2秒前
3秒前
手握灵珠常奋笔完成签到,获得积分10
3秒前
cdercder应助孙俪采纳,获得10
5秒前
寻凝完成签到,获得积分10
8秒前
8秒前
8秒前
manan发布了新的文献求助10
9秒前
menyanyan发布了新的文献求助10
9秒前
寻凝发布了新的文献求助10
11秒前
minguk发布了新的文献求助10
12秒前
13秒前
英姑应助隐形初曼采纳,获得10
14秒前
嘎嘎嘎嘎发布了新的文献求助50
14秒前
ruixuekuangben完成签到,获得积分0
15秒前
今后应助Debiao采纳,获得10
15秒前
16秒前
干秋寒完成签到,获得积分10
16秒前
17秒前
云中应助瀼瀼采纳,获得20
17秒前
高高冰蝶应助开放友灵采纳,获得10
18秒前
研友_VZG7GZ应助寻凝采纳,获得10
19秒前
Ava应助花小研采纳,获得10
19秒前
20秒前
20秒前
_呱_完成签到,获得积分10
20秒前
Serena510完成签到 ,获得积分10
20秒前
21秒前
芋泥波波完成签到,获得积分10
21秒前
英俊的铭应助不知名选手采纳,获得10
21秒前
Yiwaa完成签到,获得积分10
22秒前
万能图书馆应助Arya采纳,获得10
24秒前
DDDazhi完成签到,获得积分10
25秒前
26秒前
29秒前
好名字发布了新的文献求助10
29秒前
高高冰蝶应助开放友灵采纳,获得10
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3789703
求助须知:如何正确求助?哪些是违规求助? 3334574
关于积分的说明 10270902
捐赠科研通 3051026
什么是DOI,文献DOI怎么找? 1674401
邀请新用户注册赠送积分活动 802553
科研通“疑难数据库(出版商)”最低求助积分说明 760777