Reliable Representation Learning for Incomplete Multi-View Missing Multi-Label Classification

人工智能 计算机科学 模式识别(心理学) 缺少数据 机器学习 代表(政治) 政治学 政治 法学
作者
Chengliang Liu,Jie Wen,Yong Xu,Bob Zhang,Liqiang Nie,Min Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-17 被引量:3
标识
DOI:10.1109/tpami.2025.3546356
摘要

As a cross-topic of multi-view learning and multi-label classification, multi-view multi-label classification has gradually gained traction in recent years. The application of multi-view contrastive learning has further facilitated this process; however, the existing multi-view contrastive learning methods crudely separate the so-called negative pair, which largely results in the separation of samples belonging to the same category or similar ones. Besides, plenty of multi-view multi-label learning methods ignore the possible absence of views and labels. To address these issues, in this paper, we propose an incomplete multi-view missing multi-label classification network named RANK. In this network, a label-driven multi-view contrastive learning strategy is proposed to leverage supervised information to preserve the intra-view structure and perform the cross-view consistency alignment. Furthermore, we break through the view-level weights inherent in existing methods and propose a quality-aware subnetwork to dynamically assign quality scores to each view of each sample. The label correlation information is fully utilized in the final multi-label cross-entropy classification loss, effectively improving the discriminative power. Last but not least, our model is not only able to handle complete multi-view multi-label data, but also works on datasets with missing instances and labels. Extensive experiments confirm that our RANK outperforms existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
RRRCY完成签到,获得积分10
刚刚
将至发布了新的文献求助10
刚刚
ding应助失眠的以蓝采纳,获得10
1秒前
1秒前
瘦瘦的赛凤完成签到,获得积分10
1秒前
turbo完成签到,获得积分10
2秒前
gcy发布了新的文献求助10
2秒前
DTS发布了新的文献求助10
2秒前
阿湫发布了新的文献求助10
2秒前
靓丽紫真完成签到 ,获得积分10
2秒前
坚定缘分发布了新的文献求助10
4秒前
微笑完成签到,获得积分10
4秒前
caomao完成签到,获得积分10
5秒前
炙热芒果发布了新的文献求助10
5秒前
5秒前
5秒前
深情安青应助MYN采纳,获得10
5秒前
6秒前
7秒前
orixero应助小潘同学采纳,获得10
7秒前
研友_VZG7GZ应助鳗鱼小懒虫采纳,获得10
7秒前
健忘完成签到,获得积分10
7秒前
fcyyc发布了新的文献求助10
7秒前
1234567890完成签到 ,获得积分10
8秒前
uu完成签到,获得积分10
8秒前
LaTeXer应助念之采纳,获得100
8秒前
lili发布了新的文献求助10
9秒前
9秒前
roger发布了新的文献求助10
10秒前
10秒前
ybyb完成签到,获得积分20
10秒前
11秒前
李爱国应助QQQ采纳,获得20
11秒前
搜集达人应助ShengzhangLiu采纳,获得10
11秒前
YQQ完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
WJing完成签到,获得积分10
13秒前
ybyb发布了新的文献求助10
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
徐淮辽南地区新元古代叠层石及生物地层 2000
A new approach to the extrapolation of accelerated life test data 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4025080
求助须知:如何正确求助?哪些是违规求助? 3564824
关于积分的说明 11347273
捐赠科研通 3296000
什么是DOI,文献DOI怎么找? 1815419
邀请新用户注册赠送积分活动 890019
科研通“疑难数据库(出版商)”最低求助积分说明 813214