Reliable Representation Learning for Incomplete Multi-View Missing Multi-Label Classification

人工智能 计算机科学 模式识别(心理学) 缺少数据 机器学习 代表(政治) 政治 政治学 法学
作者
Chengliang Liu,Jie Wen,Yong Xu,Bob Zhang,Liqiang Nie,Min Zhang
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-17
标识
DOI:10.1109/tpami.2025.3546356
摘要

As a cross-topic of multi-view learning and multi-label classification, multi-view multi-label classification has gradually gained traction in recent years. The application of multi-view contrastive learning has further facilitated this process; however, the existing multi-view contrastive learning methods crudely separate the so-called negative pair, which largely results in the separation of samples belonging to the same category or similar ones. Besides, plenty of multi-view multi-label learning methods ignore the possible absence of views and labels. To address these issues, in this paper, we propose an incomplete multi-view missing multi-label classification network named RANK. In this network, a label-driven multi-view contrastive learning strategy is proposed to leverage supervised information to preserve the intra-view structure and perform the cross-view consistency alignment. Furthermore, we break through the view-level weights inherent in existing methods and propose a quality-aware subnetwork to dynamically assign quality scores to each view of each sample. The label correlation information is fully utilized in the final multi-label cross-entropy classification loss, effectively improving the discriminative power. Last but not least, our model is not only able to handle complete multi-view multi-label data, but also works on datasets with missing instances and labels. Extensive experiments confirm that our RANK outperforms existing state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
纪智勇完成签到,获得积分10
刚刚
xh发布了新的文献求助10
刚刚
黄腾给云汐儿的求助进行了留言
1秒前
1秒前
1秒前
洋了个洋洋完成签到,获得积分10
1秒前
莫铭发布了新的文献求助10
1秒前
Shuhe_Gong完成签到 ,获得积分10
1秒前
坚定妙旋完成签到,获得积分10
2秒前
隐形曼青应助枫asaki采纳,获得10
2秒前
多金发布了新的文献求助10
2秒前
3秒前
3秒前
4秒前
4秒前
科目三应助小女子常戚戚采纳,获得10
4秒前
时冬冬完成签到,获得积分0
5秒前
gentille发布了新的文献求助10
5秒前
6秒前
Luna发布了新的文献求助10
6秒前
老实的半山完成签到,获得积分10
7秒前
7秒前
李梨完成签到,获得积分10
7秒前
xh完成签到,获得积分20
7秒前
阿仔发布了新的文献求助10
7秒前
7秒前
多金完成签到,获得积分10
8秒前
周高安完成签到,获得积分10
8秒前
shark完成签到,获得积分10
9秒前
9秒前
9秒前
冷静茉莉完成签到 ,获得积分10
9秒前
张张完成签到,获得积分10
9秒前
10秒前
10秒前
fane完成签到,获得积分10
10秒前
10秒前
qyy发布了新的文献求助10
11秒前
11秒前
超帅柚子发布了新的文献求助10
12秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808831
求助须知:如何正确求助?哪些是违规求助? 3353506
关于积分的说明 10365583
捐赠科研通 3069749
什么是DOI,文献DOI怎么找? 1685746
邀请新用户注册赠送积分活动 810704
科研通“疑难数据库(出版商)”最低求助积分说明 766300