TFF-Net: A Feature Fusion Graph Neural Network-Based Vehicle Type Recognition Approach for Low-Light Conditions

计算机科学 人工智能 卷积神经网络 图形 判别式 模式识别(心理学) 稳健性(进化) 分类器(UML) 机器学习 数据挖掘 理论计算机科学 生物化学 化学 基因
作者
Huizhi Xu,Wenting Tan,Yamei Li,Yue Tian
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:25 (12): 3613-3613
标识
DOI:10.3390/s25123613
摘要

Accurate vehicle type recognition in low-light environments remains a critical challenge for intelligent transportation systems (ITSs). To address the performance degradation caused by insufficient lighting, complex backgrounds, and light interference, this paper proposes a Twin-Stream Feature Fusion Graph Neural Network (TFF-Net) model. The model employs multi-scale convolutional operations combined with an Efficient Channel Attention (ECA) module to extract discriminative local features, while independent convolutional layers capture hierarchical global representations. These features are mapped as nodes to construct fully connected graph structures. Hybrid graph neural networks (GNNs) process the graph structures and model spatial dependencies and semantic associations. TFF-Net enhances the representation of features by fusing local details and global context information from the output of GNNs. To further improve its robustness, we propose an Adaptive Weighted Fusion-Bagging (AWF-Bagging) algorithm, which dynamically assigns weights to base classifiers based on their F1 scores. TFF-Net also includes dynamic feature weighting and label smoothing techniques for solving the category imbalance problem. Finally, the proposed TFF-Net is integrated into YOLOv11n (a lightweight real-time object detector) with an improved adaptive loss function. For experimental validation in low-light scenarios, we constructed the low-light vehicle dataset VDD-Light based on the public dataset UA-DETRAC. Experimental results demonstrate that our model achieves 2.6% and 2.2% improvements in mAP50 and mAP50-95 metrics over the baseline model. Compared to mainstream models and methods, the proposed model shows excellent performance and practical deployment potential.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
在水一方应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
英姑应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
蓝莓脆脆发布了新的文献求助30
2秒前
Swenson发布了新的文献求助30
3秒前
就这发布了新的文献求助10
3秒前
3秒前
思辨233发布了新的文献求助10
4秒前
MM发布了新的文献求助10
5秒前
小橙子应助王果果采纳,获得30
5秒前
永昼发布了新的文献求助10
6秒前
gy发布了新的文献求助10
6秒前
7秒前
8秒前
爆米花应助BeiBei采纳,获得10
9秒前
文静的惜雪完成签到 ,获得积分10
9秒前
Linn发布了新的文献求助10
9秒前
科研通AI2S应助BZPL采纳,获得10
10秒前
11秒前
zyfwj发布了新的文献求助10
11秒前
g123发布了新的文献求助10
12秒前
顺心的夜南应助风之子采纳,获得10
13秒前
MM完成签到,获得积分10
13秒前
虞柠完成签到,获得积分10
14秒前
SAUANATT发布了新的文献求助10
16秒前
威武灵阳完成签到,获得积分10
16秒前
无花果应助思辨233采纳,获得10
16秒前
16秒前
17秒前
17秒前
18秒前
王欣宇完成签到 ,获得积分10
18秒前
眼睛大的安阳关注了科研通微信公众号
19秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Psychology Applied to Teaching 14th Edition 600
Robot-supported joining of reinforcement textiles with one-sided sewing heads 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4097872
求助须知:如何正确求助?哪些是违规求助? 3635616
关于积分的说明 11523795
捐赠科研通 3345719
什么是DOI,文献DOI怎么找? 1838925
邀请新用户注册赠送积分活动 906425
科研通“疑难数据库(出版商)”最低求助积分说明 823634