亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Comparing Artificial Intelligence–Generated and Clinician-Created Personalized Self-Management Guidance for Patients With Knee Osteoarthritis: Blinded Observational Study

预印本 观察研究 骨关节炎 物理疗法 医学 医学物理学 替代医学 计算机科学 万维网 内科学 病理
作者
Kai Du,Ao Li,Qi Zuo,Chenyu Zhang,Ren Guo,Ping Chen,Wei-Shuai Du,Shu-Ming Li
出处
期刊:Journal of Medical Internet Research [JMIR Publications]
卷期号:27: e67830-e67830 被引量:6
标识
DOI:10.2196/67830
摘要

Background Knee osteoarthritis is a prevalent, chronic musculoskeletal disorder that impairs mobility and quality of life. Personalized patient education aims to improve self-management and adherence; yet, its delivery is often limited by time constraints, clinician workload, and the heterogeneity of patient needs. Recent advances in large language models offer potential solutions. GPT-4 (OpenAI), distinguished by its long-context reasoning and adoption in clinical artificial intelligence research, emerged as a leading candidate for personalized health communication. However, its application in generating condition-specific educational guidance remains underexplored, and concerns about misinformation, personalization limits, and ethical oversight remain. Objective We evaluated GPT-4’s ability to generate individualized self-management guidance for patients with knee osteoarthritis in comparison with clinician-created content. Methods This 2-phase, double-blind, observational study used data from 50 patients previously enrolled in a registered randomized trial. In phase 1, 2 orthopedic clinicians each generated personalized education materials for 25 patient profiles using anonymized clinical data, including history, symptoms, and lifestyle. In phase 2, the same datasets were processed by GPT-4 using standardized prompts. All content was anonymized and evaluated by 2 independent, blinded clinical experts using validated scoring systems. Evaluation criteria included efficiency, readability (Flesch-Kincaid, Gunning Fog, Coleman-Liau, and Simple Measure of Gobbledygook), accuracy, personalization, and comprehensiveness and safety. Disagreements between reviewers were resolved through consensus or third-party adjudication. Results GPT-4 outperformed clinicians in content generation speed (530.03 vs 37.29 words per min, P<.001). Readability was better on the Flesch-Kincaid (mean 11.56, SD 1.08 vs mean 12.67 SD 0.95), Gunning Fog (mean 12.47, SD 1.36 vs mean 14.56, SD 0.93), and Simple Measure of Gobbledygook (mean 13.33, SD 1.00 vs mean 13.81 SD 0.69) indices (all P<.001), though GPT-4 scored slightly higher on the Coleman-Liau Index (mean 15.90, SD 1.03 vs mean 15.15, SD 0.91). GPT-4 also outperformed clinicians in accuracy (mean 5.31, SD 1.73 vs mean 4.76, SD 1.10; P=.05, personalization (mean 54.32, SD 6.21 vs mean 33.20, SD 5.40; P<.001), comprehensiveness (mean 51.74, SD 6.47 vs mean 35.26, SD 6.66; P<.001), and safety (median 61, IQR 58-66 vs median 50, IQR 47-55.25; P<.001). Conclusions GPT-4 could generate personalized self-management guidance for knee osteoarthritis with greater efficiency, accuracy, personalization, comprehensiveness, and safety than clinician-generated content, as assessed using standardized, guideline-aligned evaluation frameworks. These findings underscore the potential of large language models to support scalable, high-quality patient education in chronic disease management. The observed lexical complexity suggests the need to refine outputs for populations with limited health literacy. As an exploratory, single-center study, these results warrant confirmation in larger, multicenter cohorts with diverse demographic profiles. Future implementation should be guided by ethical and operational safeguards, including data privacy, transparency, and the delineation of clinical responsibility. Hybrid models integrating artificial intelligence–generated content with clinician oversight may offer a pragmatic path forward.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
97_完成签到,获得积分10
1秒前
2秒前
123发布了新的文献求助10
5秒前
怡书陈发布了新的文献求助10
6秒前
奔波霸完成签到,获得积分10
6秒前
xhn发布了新的文献求助10
7秒前
一粟完成签到 ,获得积分10
16秒前
17秒前
科研通AI6应助Pearl采纳,获得10
17秒前
活力广缘完成签到,获得积分10
19秒前
www完成签到 ,获得积分10
20秒前
xhn完成签到,获得积分10
22秒前
23秒前
28秒前
shuiyu发布了新的文献求助10
28秒前
luck发布了新的文献求助20
30秒前
32秒前
33秒前
sophieCCM0302发布了新的文献求助10
38秒前
Yini应助shain采纳,获得40
41秒前
fx完成签到 ,获得积分10
41秒前
害羞秋莲完成签到,获得积分10
42秒前
43秒前
51秒前
52秒前
无花果应助科研通管家采纳,获得10
54秒前
56秒前
冷酷沛柔完成签到,获得积分10
59秒前
害羞秋莲关注了科研通微信公众号
59秒前
Lyw完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
华仔应助床头经济学采纳,获得10
1分钟前
桐桐应助shellyAPTX4869采纳,获得10
1分钟前
1分钟前
1分钟前
sophieCCM0302完成签到,获得积分10
1分钟前
1分钟前
1分钟前
luck完成签到,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469990
求助须知:如何正确求助?哪些是违规求助? 4572966
关于积分的说明 14337816
捐赠科研通 4499841
什么是DOI,文献DOI怎么找? 2465408
邀请新用户注册赠送积分活动 1453770
关于科研通互助平台的介绍 1428347