Cross-domain transfer learning for weed segmentation and mapping in precision farming using ground and UAV images

精准农业 计算机科学 分割 人工智能 杂草 深度学习 学习迁移 领域(数学) 基本事实 计算机视觉 农业 模式识别(心理学) 遥感 数学 农学 地理 考古 纯数学 生物
作者
Junfeng Gao,Wenzhi Liao,David Nuyttens,Peter Lootens,Wenxin Xue,Erik Alexandersson,Jan Pieters
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:246: 122980-122980 被引量:10
标识
DOI:10.1016/j.eswa.2023.122980
摘要

Weed and crop segmentation is becoming an increasingly integral part of precision farming that leverages the current computer vision and deep learning technologies. Research has been extensively carried out based on images captured with a camera from various platforms. Unmanned aerial vehicles (UAVs) and ground-based vehicles including agricultural robots are the two popular platforms for data collection in fields. They all contribute to site-specific weed management (SSWM) to maintain crop yield. Currently, the data from these two platforms is processed separately, though sharing the same semantic objects (weed and crop). In our paper, we have proposed a novel method with a new deep learning-based model and the enhanced data augmentation pipeline to train field images alone and subsequently predict both field images and UAV images for weed segmentation and mapping. The network learning process is visualized by feature maps at shallow and deep layers. The results show that the mean intersection of union (IOU) values of the segmentation for the crop (maize), weeds, and soil background in the developed model for the field dataset are 0.744, 0.577, 0.979, respectively, and the performance of aerial images from an UAV with the same model, the IOU values of the segmentation for the crop (maize), weeds and soil background are 0.596, 0.407, and 0.875, respectively. To estimate the effect on the use of plant protection agents, we quantify the relationship between herbicide spraying saving rate and grid size (spraying resolution) based on the predicted weed map. The spraying saving rate is up to 90% when the spraying resolution is at 1.78×1.78 cm2. The study shows that the developed deep convolutional neural network could be used to classify weeds from both field and aerial images and delivers satisfactory results. To achieve this performance, it is crucial to perform preprocessing techniques that reduce dataset differences between two distinct domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zchahahi完成签到,获得积分10
刚刚
六叶草发布了新的文献求助10
刚刚
刚刚
深海渔完成签到,获得积分20
刚刚
科研通AI5应助如意以晴采纳,获得10
1秒前
热心市民小红花应助倪小采纳,获得10
1秒前
2秒前
詹妮发布了新的文献求助10
2秒前
778发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
卿卿发布了新的文献求助10
5秒前
yao完成签到,获得积分10
5秒前
5秒前
wsx4321应助jin采纳,获得20
6秒前
Graziella发布了新的文献求助10
6秒前
6秒前
现代的bb发布了新的文献求助10
6秒前
Muller完成签到,获得积分10
7秒前
炒面发布了新的文献求助10
7秒前
7秒前
Jasper应助qianshu采纳,获得30
8秒前
8秒前
9秒前
9秒前
9秒前
科目三应助忐忑的阑香采纳,获得10
10秒前
羽翼发布了新的文献求助10
10秒前
碧蓝飞鸟完成签到 ,获得积分10
10秒前
仿真小学生应助王晨昕采纳,获得30
10秒前
jgs完成签到,获得积分10
10秒前
10秒前
个性的迎夏完成签到,获得积分10
11秒前
1111111完成签到,获得积分10
11秒前
刘吉瀚完成签到,获得积分20
12秒前
12秒前
CipherSage应助YQ采纳,获得10
12秒前
Graziella完成签到,获得积分10
12秒前
晶生完成签到,获得积分10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Topophrenia: Place, Narrative, and the Spatial Imagination 200
Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions (3rd Edition) 200
New Syntheses with Carbon Monoxide 200
Faber on mechanics of patent claim drafting 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834665
求助须知:如何正确求助?哪些是违规求助? 3377161
关于积分的说明 10496785
捐赠科研通 3096583
什么是DOI,文献DOI怎么找? 1705068
邀请新用户注册赠送积分活动 820438
科研通“疑难数据库(出版商)”最低求助积分说明 772031