条件随机场
计算机科学
命名实体识别
图层(电子)
领域(数学)
钥匙(锁)
特征(语言学)
人工智能
模式识别(心理学)
数据挖掘
机器学习
自然语言处理
工程类
哲学
有机化学
化学
系统工程
纯数学
语言学
计算机安全
数学
任务(项目管理)
作者
Chuanning He,Han Zhang,Jiasheng Liu,Yue Shi,Haoyuan Li,Zhang Jian-hua
摘要
Named Entity Recognition (NER) for chemical experiment operations can not only extract key information and automatically generate operation instructions in the field of automated synthesis but also facilitate chemical experiment personnel in analyzing literature data more efficiently. In this paper, we propose a NER model that combines multiple layers of BiLSTM and IDCNN in parallel, based on the Bert pre-trained model. By adjusting the number of BiLSTM and IDCNN modules at each layer, we can extract more contextual information and local feature for different datasets, and subsequently generate entity labels using a Conditional Random Field (CRF) layer. The experimental results indicate that the model achieves an F1 score of 0.9174 in the constructed dataset, surpassing existing algorithms.
科研通智能强力驱动
Strongly Powered by AbleSci AI