Predicting Student Engagement Using Sequential Ensemble Model

计算机科学 人工智能 机器学习
作者
Xinran Tian,Bernardo Pereira Nunes,Yifeng Liu,Rubén Manrique
出处
期刊:IEEE Transactions on Learning Technologies [Institute of Electrical and Electronics Engineers]
卷期号:17: 939-950 被引量:2
标识
DOI:10.1109/tlt.2023.3342860
摘要

Predicting student engagement can provide timely feedback and help teachers make adjustments to their practices to meet student needs and improve their learning experience. This article proposes a four-step approach using a sequential ensemble model for engagement prediction, discusses the contribution of different features to the model and the influence of video segmentation in the prediction, reports on two in-the-wild datasets-The Emotion Recognition in the Wild Engagement Prediction (EmotiW-EP) dataset published in 2018 as part of a student engagement task and the Dataset for Affective States in E-Environments (DAiSEE), a general purpose dataset also used in the educational context but not limited to it, and, finally, presents a comprehensive and thorough critical analysis, highlighting crucial factors to consider when using AI/computer vision models in educational datasets for learning purposes. Experiments show that our proposed approach outperforms state-of-the-art approaches by obtaining a mean square error of 0.0386 on the DAiSEE dataset and 0.0610 on the EmotiW-EP dataset. We conclude this article with a critical analysis of the reliability of such predictions in learning environments and propose future directions for the effective use of AI/computer vision models in education.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助GUYIMI采纳,获得10
1秒前
科研通AI6.1应助专注诗珊采纳,获得10
2秒前
2秒前
2秒前
Xingci发布了新的文献求助10
2秒前
万能图书馆应助陈陈采纳,获得10
2秒前
3秒前
鹿小娇完成签到,获得积分10
3秒前
3秒前
小橘子2022完成签到,获得积分10
3秒前
打打应助feihu采纳,获得10
3秒前
h哈发布了新的文献求助10
4秒前
煎饼果子发布了新的文献求助10
4秒前
叶子宁发布了新的文献求助10
5秒前
heyheybaby发布了新的文献求助10
6秒前
8秒前
搜集达人应助杜儒采纳,获得10
8秒前
9秒前
大模型应助晃悠悠的可乐采纳,获得10
11秒前
14秒前
feihu发布了新的文献求助10
14秒前
15秒前
16秒前
ccccc完成签到,获得积分10
16秒前
GQ完成签到,获得积分10
16秒前
快乐藤椒堡完成签到 ,获得积分10
17秒前
张靖松发布了新的文献求助10
18秒前
cxy发布了新的文献求助10
19秒前
谦让的雪枫完成签到 ,获得积分10
20秒前
NexusExplorer应助heyheybaby采纳,获得10
20秒前
隐形曼青应助科研通管家采纳,获得10
20秒前
20秒前
CAOHOU应助科研通管家采纳,获得10
20秒前
21秒前
Xhhaai应助科研通管家采纳,获得10
21秒前
21秒前
Hello应助科研通管家采纳,获得10
21秒前
21秒前
情怀应助科研通管家采纳,获得10
21秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5794177
求助须知:如何正确求助?哪些是违规求助? 5753279
关于积分的说明 15488046
捐赠科研通 4920965
什么是DOI,文献DOI怎么找? 2649189
邀请新用户注册赠送积分活动 1596498
关于科研通互助平台的介绍 1550988