Retinal OCT biomarkers and their association with cognitive function—clinical and AI approaches

认知 疾病 认知功能衰退 生物标志物 医学 心理学 神经科学 病理 生物 痴呆 生物化学
作者
Franziska G. Rauscher,Rui Bernardes
标识
DOI:10.1007/s00347-024-01988-9
摘要

Retinal optical coherence tomography (OCT) biomarkers have the potential to serve as early, noninvasive, and cost-effective markers for identifying individuals at risk for cognitive impairments and neurodegenerative diseases. They may also aid in monitoring disease progression and evaluating the effectiveness of interventions targeting cognitive decline. The association between retinal OCT biomarkers and cognitive performance has been demonstrated in several studies, and their importance in cognitive assessment is increasingly being recognized. Machine learning (ML) is a branch of artificial intelligence (AI) with an exponential number of applications in the medical field, particularly its deep learning (DL) subset, which is widely used for the analysis of medical images. These techniques efficiently deal with novel biomarkers when their outcome for the applications of interest is unclear, e.g., for diagnosis, prognosis prediction, disease staging, or any other relevance to clinical practice. However, using AI-based tools for medical purposes must be approached with caution, despite the many efforts to address the black-box nature of such approaches, especially due to the general underperformance in datasets other than those used for their development. Retinal OCT biomarkers are promising as potential indicators for decline in cognitive function. The underlying mechanisms are currently being explored to gain deeper insights into this relationship linking retinal health and cognitive function. Insights from neurovascular coupling and retinal microvascular changes play an important role. Further research is needed to establish the validity and utility of retinal OCT biomarkers as early indicators of cognitive decline and neurodegenerative diseases in routine clinical practice. Retinal OCT biomarkers could then provide a new avenue for early detection, monitoring and intervention in cognitive impairment with the potential to improve patient care and outcomes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太阳XIX发布了新的文献求助10
刚刚
CipherSage应助zhangyan00004采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
2秒前
fsznc1完成签到 ,获得积分0
3秒前
hhhh完成签到 ,获得积分10
3秒前
能干的谷蕊完成签到 ,获得积分10
4秒前
4秒前
小邹完成签到,获得积分10
6秒前
沐风完成签到 ,获得积分10
7秒前
SciGPT应助龚幻梦采纳,获得10
7秒前
kingwill应助脆脆鲨采纳,获得20
7秒前
WMT发布了新的文献求助10
8秒前
8秒前
ww完成签到,获得积分10
8秒前
adaadlj;a发布了新的文献求助10
9秒前
彭于晏应助wanghaowen采纳,获得10
10秒前
11秒前
12秒前
heartbeat发布了新的文献求助10
14秒前
全可冥完成签到 ,获得积分10
14秒前
artemis发布了新的文献求助10
15秒前
16秒前
书爱发布了新的文献求助10
16秒前
龚幻梦完成签到,获得积分10
16秒前
17秒前
谨慎的夏蓉应助三番先森采纳,获得10
20秒前
sonicgoboy完成签到,获得积分10
20秒前
研友_VZG7GZ应助YAN采纳,获得10
20秒前
龚幻梦发布了新的文献求助10
21秒前
21秒前
GQ发布了新的文献求助10
21秒前
上官若男应助酷炫的海之采纳,获得10
21秒前
动听的琴完成签到,获得积分10
21秒前
22秒前
残幻应助全可冥采纳,获得10
22秒前
aa发布了新的文献求助10
22秒前
Hoijuon应助难过的达采纳,获得30
22秒前
23秒前
通行证发布了新的文献求助30
25秒前
高分求助中
传播真理奋斗不息——中共中央编译局成立50周年纪念文集 2000
The Oxford Encyclopedia of the History of Modern Psychology 2000
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 1200
Deutsche in China 1920-1950 1200
中共中央编译局成立四十周年纪念册 / 中共中央编译局建局四十周年纪念册 950
Applied Survey Data Analysis (第三版, 2025) 850
Mineral Deposits of Africa (1907-2023): Foundation for Future Exploration 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3876349
求助须知:如何正确求助?哪些是违规求助? 3418937
关于积分的说明 10711058
捐赠科研通 3143541
什么是DOI,文献DOI怎么找? 1734424
邀请新用户注册赠送积分活动 836786
科研通“疑难数据库(出版商)”最低求助积分说明 782823