尤登J统计
接收机工作特性
切断
莱姆病
索引(排版)
价值(数学)
计算机科学
统计
人工智能
模式识别(心理学)
数学
免疫学
医学
物理
量子力学
万维网
作者
Kunal Garg,Sara Campolonghi
标识
DOI:10.1007/978-1-0716-3561-2_5
摘要
Detection tools designed to diagnose complex diseases such as Lyme Borreliosis require an optimal cutoff point to distinguish the healthy from the diseased. The chapter will provide a practical guide to selecting an optimal cutoff mark by creating the receiver operating characteristic (ROC) in Microsoft Excel. To guide the creation of a ROC graphical plot, we will use example data from an enzyme-linked immunosorbent assay (ELISA) measuring anti-human immunoglobulin G (IgG) against whole-cell Borrelia lysates. Herein, the ROC method will demonstrate that an optical density (OD) value from ELISA with the highest Youden Index (J) is an optimal cutoff value to differentiate positive and negative IgG immune responses in human serum samples.
科研通智能强力驱动
Strongly Powered by AbleSci AI