A parameter-adaptive spectral graph wavelet transform method for wind turbines vibration signal denoising

降噪 峰度 小波 计算机科学 模式识别(心理学) 数学 算法 人工智能 统计
作者
Jiayang Liu,Qiang Zhang,Li Deng,Yun Teng,Shijing Wu,Xiaosun Wang
出处
期刊:International Journal of Mechanical Sciences [Elsevier BV]
卷期号:270: 109075-109075 被引量:4
标识
DOI:10.1016/j.ijmecsci.2024.109075
摘要

The signal noise can have a negative impact on the accuracy of engineering equipment condition assessment. However, the choice of decomposition layers and design parameters significantly impacts the outcomes of spectral graph wavelet transform (SGWT) methods. Conventional SGWT techniques often rely on predefined design parameters and decomposition layers, which can limit satisfactory decomposition results. To address this challenge, we present a novel parameter-adaptive SGWT method, referred to as PASGWT, designed for denoising vibration signals from wind turbines (WTs). PASGWT adaptively adjusts the optimal design parameters and decomposition layers to align with the signal characteristics. Furthermore, it introduces a novel evaluation metric to effectively identify fault-related features in signals corrupted by strong noise interference. Initially, the vibration signal is transformed into a directed graph representation. Subsequently, an SGWT with a warping function is constructed to process the signal. To guide the optimization process, we introduce a comprehensive evaluation index called the combination kurtosis index (CKI), which integrates periodic kurtosis and envelope spectrum kurtosis. The SGWT parameters are then optimized by the Hunter-Prey optimization (HPO) algorithm with maximum CKI value as the optimization objective. Finally, the denoised signal is reconstructed by selecting components with CKI values exceeding the average CKI value. The efficacy and practicality of the proposed method are validated through case studies involving simulated signals and two real-world fault signals from a scaled-down wind turbine test rig. Furthermore, comparative experiments highlight the superiority of the proposed method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的可乐完成签到,获得积分10
4秒前
4秒前
6秒前
笨笨师完成签到,获得积分20
6秒前
XXXX发布了新的文献求助10
7秒前
Owen应助瓦解99采纳,获得10
8秒前
依米zhang完成签到,获得积分10
8秒前
小羊完成签到 ,获得积分10
8秒前
xuxingxing发布了新的文献求助10
8秒前
坚强铸海发布了新的文献求助10
12秒前
zzz发布了新的文献求助10
12秒前
13秒前
斯文败类应助Pp采纳,获得10
13秒前
呼呼完成签到,获得积分10
15秒前
小虎应助Fengkai_CHEN采纳,获得30
15秒前
17秒前
minuxSCI完成签到,获得积分10
17秒前
19秒前
坚强铸海完成签到,获得积分10
20秒前
牛牛眉目发布了新的文献求助10
20秒前
20秒前
21秒前
干姜发布了新的文献求助10
22秒前
Pp发布了新的文献求助10
23秒前
666应助科研鸟采纳,获得10
23秒前
蓝天白云发布了新的文献求助10
23秒前
瓦解99发布了新的文献求助10
26秒前
yx_cheng应助zzz采纳,获得30
26秒前
Coraline应助jt采纳,获得10
27秒前
28秒前
33秒前
csy发布了新的文献求助10
35秒前
瓦解99完成签到,获得积分10
36秒前
36秒前
37秒前
张渔歌完成签到,获得积分10
37秒前
37秒前
38秒前
40秒前
asdf应助明天见采纳,获得10
40秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966366
求助须知:如何正确求助?哪些是违规求助? 3511778
关于积分的说明 11159852
捐赠科研通 3246372
什么是DOI,文献DOI怎么找? 1793416
邀请新用户注册赠送积分活动 874427
科研通“疑难数据库(出版商)”最低求助积分说明 804388