Data augmentation for invasive brain–computer interfaces based on stereo-electroencephalography (SEEG)

计算机科学 人工智能 立体脑电图 自编码 分类器(UML) 模式识别(心理学) 深度学习 生成对抗网络 生成模型 脑电图 卷积神经网络 人工神经网络 变压器 生成语法 机器学习 发作性 物理 量子力学 电压 精神科 心理学
作者
Xiaolong Wu,Dingguo Zhang,Guangye Li,Xin Gao,Benjamin Metcalfe,Liang Chen
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:21 (1): 016026-016026 被引量:6
标识
DOI:10.1088/1741-2552/ad200e
摘要

Abstract Objective. Deep learning is increasingly used for brain–computer interfaces (BCIs). However, the quantity of available data is sparse, especially for invasive BCIs. Data augmentation (DA) methods, such as generative models, can help to address this sparseness. However, all the existing studies on brain signals were based on convolutional neural networks and ignored the temporal dependence. This paper attempted to enhance generative models by capturing the temporal relationship from a time-series perspective. Approach . A conditional generative network (conditional transformer-based generative adversarial network (cTGAN)) based on the transformer model was proposed. The proposed method was tested using a stereo-electroencephalography (SEEG) dataset which was recorded from eight epileptic patients performing five different movements. Three other commonly used DA methods were also implemented: noise injection (NI), variational autoencoder (VAE), and conditional Wasserstein generative adversarial network with gradient penalty (cWGANGP). Using the proposed method, the artificial SEEG data was generated, and several metrics were used to compare the data quality, including visual inspection, cosine similarity (CS), Jensen–Shannon distance (JSD), and the effect on the performance of a deep learning-based classifier. Main results . Both the proposed cTGAN and the cWGANGP methods were able to generate realistic data, while NI and VAE outputted inferior samples when visualized as raw sequences and in a lower dimensional space. The cTGAN generated the best samples in terms of CS and JSD and outperformed cWGANGP significantly in enhancing the performance of a deep learning-based classifier (each of them yielding a significant improvement of 6% and 3.4%, respectively). Significance . This is the first time that DA methods have been applied to invasive BCIs based on SEEG. In addition, this study demonstrated the advantages of the model that preserves the temporal dependence from a time-series perspective.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
科研通AI6.1应助安静含卉采纳,获得10
1秒前
斯文败类应助安静含卉采纳,获得30
1秒前
量子星尘发布了新的文献求助10
2秒前
怦然发布了新的文献求助10
2秒前
牛拉犁完成签到 ,获得积分10
2秒前
学海WY完成签到,获得积分10
6秒前
bct发布了新的文献求助10
6秒前
领导范儿应助Jade采纳,获得10
6秒前
火翟丰丰山心完成签到,获得积分10
7秒前
8秒前
秦菜001完成签到,获得积分10
8秒前
妍妍发布了新的文献求助10
9秒前
情怀应助踏实的老四采纳,获得10
10秒前
12秒前
菘蓝完成签到,获得积分10
13秒前
沈海完成签到,获得积分10
13秒前
13秒前
Owen应助箫音采纳,获得10
13秒前
黎明森完成签到,获得积分10
14秒前
14秒前
mountainbike完成签到,获得积分10
15秒前
菘蓝发布了新的文献求助10
17秒前
17秒前
Jade发布了新的文献求助10
17秒前
17秒前
黎明森发布了新的文献求助30
18秒前
仰望星空扭到腰完成签到,获得积分10
18秒前
wanci应助LucyMartinez采纳,获得10
19秒前
19秒前
yanmengzhen完成签到 ,获得积分10
20秒前
21秒前
21秒前
22秒前
23秒前
柒染完成签到 ,获得积分10
23秒前
EasonX完成签到,获得积分10
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5738417
求助须知:如何正确求助?哪些是违规求助? 5377429
关于积分的说明 15337726
捐赠科研通 4881453
什么是DOI,文献DOI怎么找? 2623558
邀请新用户注册赠送积分活动 1572291
关于科研通互助平台的介绍 1529093