Development and Field Deployment of a ppb-Level SO2/NO2 Dual-Gas Sensor System for Agricultural Early Fire Identification

二氧化氮 差分吸收光谱 环境科学 分光计 遥感 材料科学 吸收(声学) 光学 气象学 地质学 复合材料 物理
作者
Gangyun Guan,Qiang‐Sheng Wu,Anqi Liu,Mingquan Pi,Fang Song,Jie Zheng,Yiding Wang,Yù Zhang,Xue Bai,Chuantao Zheng
出处
期刊:ACS Sensors [American Chemical Society]
卷期号:9 (12): 6728-6740 被引量:6
标识
DOI:10.1021/acssensors.4c02405
摘要

Sulfur dioxide (SO2) and nitrogen dioxide (NO2) are chemical indicators of crop straw combustion as well as significant atmospheric pollutants. It is challenging to promptly detect natural "wildfires" during agricultural production, which often lead to uncontrollable and substantial economic losses. Moreover, both "wildfires" and artificial "straw burning" practices pose severe threats to the ecological environment and human health. Consequently, developing sensors capable of rapid and high-precision quantitative analysis of SO2/NO2 is essential and urgent for detecting early fires in agricultural activities. Here, we demonstrate an incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) sensing system utilizing a 366 nm ultraviolet light emitting diode, designed for real-time, high-precision monitoring of SO2 and NO2 and is used for early fire detection validation. The optical resonant cavity is constructed within a 60 mm cage system mechanical structure, achieving a maximum optical path length of nearly 2 km with a length of ∼460 mm. The output light carrying information about the species and concentration of the analyte molecules is coupled into the miniaturized grating spectrometer via a fiber, and continuous spectral fitting and concentration inversion are performed on the computer. We propose a spectral analysis and concentration inversion model based on an improved particle swarm optimization-support vector machine (IPSO-SVM) algorithm. By discrimination of the absorption spectral characteristics of SO2/NO2, we achieve superior prediction accuracy. Experimental results indicate that the detection limits of SO2 and NO2 under the optimized averaging time are 77.5 parts per billion by volume (ppbv) and 0.037 ppbv, respectively. The field deployment of the sensor in scenarios such as continuous outdoor air pollution monitoring, in situ combustion feature identification, and early fire mobile detection has demonstrated the superior reliability and sensitivity of this sensor system.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
刚刚
香蕉觅云应助科研小白采纳,获得10
1秒前
Anglebyebyeye完成签到,获得积分10
2秒前
2秒前
3秒前
MOLV发布了新的文献求助10
3秒前
MLJ完成签到,获得积分20
3秒前
cactus完成签到 ,获得积分10
6秒前
6秒前
6秒前
7秒前
pepper发布了新的文献求助10
8秒前
chenzq完成签到,获得积分20
8秒前
怡然的晓丝完成签到 ,获得积分10
8秒前
9秒前
10秒前
差劲先森完成签到 ,获得积分10
10秒前
DQY完成签到,获得积分10
10秒前
xuqiansd完成签到,获得积分10
12秒前
12秒前
852应助川上富江采纳,获得10
12秒前
12秒前
qiangxu发布了新的文献求助10
12秒前
Sakura完成签到,获得积分10
12秒前
12秒前
闪电爱学习完成签到 ,获得积分10
13秒前
谦让的新之完成签到 ,获得积分10
14秒前
14秒前
风清扬发布了新的文献求助10
14秒前
京京发布了新的文献求助10
14秒前
14秒前
哞哞哞完成签到,获得积分10
15秒前
16秒前
量子星尘发布了新的文献求助10
16秒前
科研通AI6应助科研通管家采纳,获得10
16秒前
隐形曼青应助科研通管家采纳,获得10
16秒前
无花果应助67n采纳,获得10
16秒前
ding应助科研通管家采纳,获得10
16秒前
熬夜波比应助科研通管家采纳,获得10
16秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704029
求助须知:如何正确求助?哪些是违规求助? 5155235
关于积分的说明 15241017
捐赠科研通 4858219
什么是DOI,文献DOI怎么找? 2607009
邀请新用户注册赠送积分活动 1558105
关于科研通互助平台的介绍 1515929