密度泛函理论
物理
凝聚态物理
电荷(物理)
铁磁性
量子力学
作者
Rui Lou,Liqin Zhou,Wenhua Song,Alexander Fedorov,Zhijun Tu,Bei Jiang,Qi Wang,Man Li,Zhonghao Liu,Xuezhi Chen,O. Rader,B. Büchner,Yujie Sun,Hongming Weng,Hechang Lei,Shancai Wang
标识
DOI:10.1038/s41467-024-53343-w
摘要
Abstract Kagome magnets provide a fascinating platform for the realization of correlated topological quantum phases under various magnetic ground states. However, the effect of the magnetic spin configurations on the characteristic electronic structure of the kagome-lattice layer remains elusive. Here, utilizing angle-resolved photoemission spectroscopy and density functional theory calculations, we report the spectroscopic evidence for the spin-reorientation effect of a kagome ferromagnet Fe 3 Ge, which is composed solely of kagome planes. As the Fe moments cant from the c -axis into the a b plane upon cooling, the two kinds of kagome-derived Dirac fermions respond quite differently. The one with less-dispersive bands ( k z ~ 0) containing the $$3{d}_{{z}^{2}}$$ 3 d z 2 orbitals evolves from gapped into nearly gapless, while the other with linear dispersions ( k z ~ π ) embracing the 3 d x z /3 d y z components remains intact, suggesting that the effect of spin reorientation on the Dirac fermions has an orbital selectivity. Moreover, we demonstrate that there is no signature of charge order formation in Fe 3 Ge, contrasting with its sibling compound FeGe, a newly established charge-density-wave kagome magnet.
科研通智能强力驱动
Strongly Powered by AbleSci AI