Prediction of Exchange Bias for Magnetic Heterostructure Nanoparticles with Machine Learning

交换偏差 纳米颗粒 材料科学 磁铁 矫顽力 异质结 磁性纳米粒子 计算机科学 纳米技术 凝聚态物理 磁场 机器学习 机械工程 光电子学 磁化 物理 磁各向异性 工程类 量子力学
作者
Ksenya A. Kapranova,Julia Razlivina,Andrei Dmitrenko,Daniil V. Kladko,Vladimir V. Vinogradov
出处
期刊:Journal of Physical Chemistry C [American Chemical Society]
标识
DOI:10.1021/acs.jpcc.4c07028
摘要

Exchange bias is essential for the stability and control of nanoparticles' magnetic properties for their application as rare-earth-free permanent magnet, magnetic storage, magnetic hyperthermia, and catalysis. Core–shell structures of magnetic bimagnetic particles have garnered increasing interest due to their larger coercive and exchange bias fields, tunable blocking temperatures, and enhanced Neel temperature. However, the design approach of nanoparticles with exchange bias using a computational method has a high computational cost and offers limited efficiency in predicting complex core–shell nanoparticle systems. Machine learning (ML) predictions provide a transformative approach to the design and optimization of materials with desirable exchange bias (EB) properties by offering rapid and precise evaluations of material compositions and configurations. This study addresses this gap by developing an ML model for the prediction of EB field in magnetic nanoparticles, which provide a fast and effective alternative for traditional computational methods. Hence, comparative analysis of ML models, including the Kolmogorov-Arnold Network (KAN), is for predicting EB in core–shell and heterostructure nanoparticles. Among the predictive models, XGBoost demonstrated superior performance, achieving R2 values of 0.74 and 0.75 on the test and validation data sets, respectively. KAN showed reduced generalization power with the R2 test of 0.67 but was more accurate in predicting high values of the EB. The Shapley additive explanation (SHAP) analysis revealed unexpected dependencies between nanoparticle properties and magnetic behavior, offering new insights for optimizing a material design. These findings are highly relevant for developing materials for rare-earth-free permanent magnets, magnetic storage, magnetic hyperthermia, and catalysis, where precise control of magnetic properties is crucial.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
huang发布了新的文献求助10
2秒前
3秒前
3秒前
Aurelia完成签到 ,获得积分10
5秒前
6秒前
luanzhaohui发布了新的文献求助10
7秒前
7秒前
酷酷友容发布了新的文献求助10
7秒前
cooper完成签到 ,获得积分10
8秒前
11秒前
12秒前
12秒前
14秒前
PhD_Lee73完成签到 ,获得积分10
14秒前
zhangzhang发布了新的文献求助10
18秒前
善学以致用应助cooper采纳,获得10
19秒前
TIGun发布了新的文献求助10
19秒前
21秒前
22秒前
hucchongzi应助L_online采纳,获得30
24秒前
小唐完成签到 ,获得积分10
25秒前
七七完成签到 ,获得积分10
26秒前
27秒前
31秒前
leoric关注了科研通微信公众号
32秒前
酷波er应助zhangzhang采纳,获得10
33秒前
35秒前
36秒前
无心的天蓝完成签到,获得积分10
37秒前
郭星星完成签到,获得积分10
37秒前
我是老大应助LANER采纳,获得10
37秒前
ira发布了新的文献求助10
38秒前
tian发布了新的文献求助10
41秒前
41秒前
42秒前
科研通AI5应助yummy采纳,获得10
42秒前
li123xxx完成签到,获得积分10
45秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3778211
求助须知:如何正确求助?哪些是违规求助? 3323857
关于积分的说明 10216183
捐赠科研通 3039074
什么是DOI,文献DOI怎么找? 1667762
邀请新用户注册赠送积分活动 798383
科研通“疑难数据库(出版商)”最低求助积分说明 758366