Managerial Ability and Labor Investment

投资(军事) 业务 劳动经济学 经济 产业组织 微观经济学 政治学 政治 法学
作者
Mark C. Anderson,Peter D. Sherer,Dongning Yu
出处
期刊:Management Science [Institute for Operations Research and the Management Sciences]
卷期号:71 (9): 8072-8095 被引量:6
标识
DOI:10.1287/mnsc.2020.01932
摘要

The capability of higher-ability managers to acquire and use resources more efficiently than lower-ability managers suggests a positive linear relation between labor investment efficiency (LIE) and managerial ability (MA). However, a puzzle emerges about how the best managers set themselves apart from their peers, calling into question the linearity of the relation between LIE and MA. We explore this puzzle by asking how the highest-ability managers achieve the highest performance levels. We then investigate this puzzle empirically by considering alternatives to a linear relation between LIE and MA. We begin with the distinction that managers achieve the highest performance when they combine efficient exploitation of existing products and services with successful exploration for innovations in products and services. This point is relevant to our puzzle because a firm’s labor needs for exploration are high and unpredictable. Thus, we expect the highest-ability managers to purposefully invest more than predicted by a model of optimal labor investment across firms. In contrast, we expect low-ability managers, who are less able to evaluate, forecast, and make efficient investments, to deviate more from predicted labor investment and vacillate between over- and underinvestment. We present evidence that supports our predictions of nonlinear relations between LIE and MA, with high-ability managers investing more than predicted and low-ability managers over- and underinvesting. We make and test related hypotheses about exploration (investment in research and development), and we probe further by relating future firm performance to over- and underinvestment in labor for different levels of MA. This paper was accepted by Suraj Srinivasan, accounting. Funding: This work was supported by the CPA Alberta Education Foundation. Supplemental Material: The data files are available at https://doi.org/10.1287/mnsc.2020.01932 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sledge发布了新的文献求助10
刚刚
黎嘉怡完成签到,获得积分10
刚刚
CipherSage应助虚拟的鞋垫采纳,获得10
刚刚
刚刚
yin发布了新的文献求助10
1秒前
麻烦完成签到,获得积分10
1秒前
善学以致用应助yuye_Liu采纳,获得10
1秒前
渔舟唱晚完成签到,获得积分10
2秒前
淡然的语山完成签到,获得积分10
2秒前
江澄完成签到,获得积分10
2秒前
wanci应助Frank采纳,获得10
2秒前
Twistti发布了新的文献求助10
2秒前
嘻嘻哈哈完成签到,获得积分10
2秒前
赵景豪发布了新的文献求助30
3秒前
甜美的嵩发布了新的文献求助10
3秒前
慕青应助坛子采纳,获得10
5秒前
Momomo应助黎嘉怡采纳,获得10
5秒前
完美世界应助轻松飞凤采纳,获得10
5秒前
JamesPei应助淡然的语山采纳,获得10
5秒前
青山完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
Roche发布了新的文献求助10
7秒前
复杂访冬完成签到,获得积分10
7秒前
小二郎应助阿健采纳,获得10
7秒前
hello发布了新的文献求助20
7秒前
Elinor完成签到 ,获得积分10
7秒前
7秒前
8秒前
9秒前
小二郎应助青帝采纳,获得10
9秒前
务实的南露完成签到,获得积分10
9秒前
NexusExplorer应助tcl1998采纳,获得10
10秒前
10秒前
10秒前
辉腾完成签到,获得积分10
11秒前
媛媛发布了新的文献求助10
11秒前
Jasper应助南宫清涟采纳,获得20
11秒前
liun完成签到,获得积分10
11秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 15000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5701013
求助须知:如何正确求助?哪些是违规求助? 5141803
关于积分的说明 15232611
捐赠科研通 4856117
什么是DOI,文献DOI怎么找? 2605623
邀请新用户注册赠送积分活动 1556993
关于科研通互助平台的介绍 1515065