Deep Reinforcement Learning for Mobility-Aware Digital Twin Migrations in Edge Computing

计算机科学 强化学习 GSM演进的增强数据速率 供应 分布式计算 边缘计算 服务(商务) 云计算 同步(交流) 移动设备 资源配置 计算机网络 人工智能 频道(广播) 经济 经济 操作系统
作者
Yuncan Zhang,Luying Wang,Weifa Liang
出处
期刊:IEEE Transactions on Services Computing [Institute of Electrical and Electronics Engineers]
卷期号:18 (2): 704-717 被引量:5
标识
DOI:10.1109/tsc.2025.3528331
摘要

The past decade witnessed an explosive growth on the number of IoT devices (objects/suppliers), including portable mobile devices, autonomous vehicles, sensors and intelligence appliances. To realize the digital representations of objects, Digital Twins (DTs) are key enablers to provide real-time monitoring, behavior simulations and predictive decisions for objects. On the other hand, Mobile Edge Computing (MEC) has been envisioned as a promising paradigm to provide delay-sensitive services for mobile users (consumers) at the network edge, e.g., real-time healthcare, AR/VR, online gaming, smart cities, and so on. In this paper, we study a novel DT migration problem for high quality service provisioning in an MEC network with the mobility of both suppliers and consumers for a finite time horizon, with the aim to minimize the sum of the accumulative DT synchronization cost of all suppliers and the total service cost of all consumers requesting for different DT services. To this end, we first show that the problem is NP-hard, and formulate an integer linear programming solution to the offline version of the problem. We then develop a Deep Reinforcement Learning (DRL) algorithm for the DT migration problem, by considering the system dynamics and heterogeneity of different resource consumptions, mobility traces of both suppliers and consumers, and workloads of cloudlets. We finally evaluate the performance of the proposed algorithms through experimental simulations. Simulation results demonstrate that the proposed algorithms are promising.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
思思完成签到,获得积分10
刚刚
汉堡包应助就这采纳,获得10
刚刚
1秒前
1秒前
浮游应助追尾的猫采纳,获得10
3秒前
3秒前
4秒前
5秒前
chenqiumu应助zxl采纳,获得30
5秒前
yiyi131发布了新的文献求助10
6秒前
海英发布了新的文献求助20
7秒前
okra给一叶舟的求助进行了留言
7秒前
苹果傲芙发布了新的文献求助10
7秒前
8秒前
chenchen111发布了新的文献求助10
9秒前
共享精神应助江湖樊南生采纳,获得10
9秒前
10秒前
10秒前
躺平的洋仔完成签到,获得积分10
11秒前
12秒前
可靠板栗发布了新的文献求助10
13秒前
13秒前
就这发布了新的文献求助10
14秒前
负责青亦完成签到 ,获得积分10
14秒前
Gavin完成签到,获得积分10
14秒前
15秒前
15秒前
SSSS完成签到,获得积分10
15秒前
15秒前
junzzz完成签到,获得积分10
15秒前
打打应助xdc采纳,获得10
16秒前
科研互通完成签到,获得积分10
16秒前
刘旦生发布了新的文献求助10
16秒前
16秒前
吴兰田完成签到,获得积分10
17秒前
小二郎应助70采纳,获得30
18秒前
戈多发布了新的文献求助10
18秒前
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513818
求助须知:如何正确求助?哪些是违规求助? 4607915
关于积分的说明 14507365
捐赠科研通 4543466
什么是DOI,文献DOI怎么找? 2489614
邀请新用户注册赠送积分活动 1471533
关于科研通互助平台的介绍 1443560