In Situ Construction of LiF/Li3N/LixGa Hybrid SEI to Boost Long‐Lifespan Succinonitrile‐Based Solid‐State Lithium Metal Batteries

丁二腈 材料科学 锂(药物) 固态 金属锂 原位 金属 无机化学 电极 物理化学 冶金 阳极 化学 有机化学 内分泌学 医学 电解质
作者
Tianqi Yang,Jiatao Lou,Liuyi Hu,Qi Liu,Zhouyu Huang,Qifeng Zhou,Haiyuan Zhang,Wenlong Song,Hui Huang,Yao Wang,Xinyong Tao,Xia Yang,Jun Zhang,Jun Zhang
出处
期刊:Advanced Functional Materials [Wiley]
标识
DOI:10.1002/adfm.202423719
摘要

Abstract Succinonitrile (SN)‐based in situ polymerized solid‐state electrolytes (SIPSSEs) for lithium batteries have attracted considerable attention due to their high ionic conductivity, wide electrochemical stability window (ESW), and potential for large‐scale applications. Despite these advantages, the polar cyano groups in SN molecules lead to significant interfacial problems upon direct contact with metallic lithium (Li), including unstable solid electrolyte interface (SEI) and the growth of Li dendrites, which impede the further application of SIPSSEs to solid‐state lithium metal batteries (SSLMBs). To address these challenges, here a GaF 3 ‐modified SIPSSE (GSNE) is developed by incorporating GaF 3 and fluoroethylene carbonate to passivate metallic Li and employing ethoxylated trimethylolpropane triacrylate to anchor SN molecules. As a result of this strategic electrolyte component design, GSNE achieves an ionic conductivity of 1.3 × 10 −3 S cm −1 at 30 °C as well as wide ESW up to 4.6 V. Additionally, a LiF/Li 3 N/Li x Ga hybrid SEI is formed on the metallic Li surface through an in situ alloying reaction. This hybrid SEI demonstrates superior interfacial stability and fast Li⁺ transport kinetics, as confirmed by various advanced characterization techniques and theoretical calculations. Consequently, LiFePO 4 /GSNE/Li cells exhibit excellent rate performance and cycling stability. This work provides new insights into the designing of long‐lifespan SIPSSEs‐based SSLMBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
以州完成签到,获得积分10
1秒前
ding应助Travaler采纳,获得10
1秒前
kk发布了新的文献求助10
1秒前
2秒前
2秒前
刘中雪完成签到,获得积分10
2秒前
yanzi发布了新的文献求助10
3秒前
xiaotailan完成签到,获得积分20
3秒前
沈彬彬发布了新的文献求助10
3秒前
4秒前
upupup完成签到,获得积分20
4秒前
5秒前
5秒前
景三完成签到,获得积分10
5秒前
1997发布了新的文献求助10
6秒前
小书童应助是我呀小夏采纳,获得10
6秒前
mei发布了新的文献求助10
6秒前
6秒前
8秒前
感性的安露完成签到,获得积分0
8秒前
9秒前
10秒前
852应助方法东方时尚采纳,获得10
10秒前
10秒前
11秒前
冷酷跳跳糖完成签到,获得积分10
11秒前
111发布了新的文献求助10
12秒前
整齐凌萱发布了新的文献求助10
13秒前
ding应助红温卡学妹采纳,获得10
14秒前
14秒前
17秒前
mei完成签到,获得积分10
17秒前
18秒前
聪明的青寒应助金雪采纳,获得10
18秒前
风中淇完成签到,获得积分10
18秒前
20秒前
20秒前
1997完成签到,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Instant Bonding Epoxy Technology 500
Methodology for the Human Sciences 500
ASHP Injectable Drug Information 2025 Edition 400
DEALKOXYLATION OF β-CYANOPROPIONALDEYHDE DIMETHYL ACETAL 400
Assessment of adverse effects of Alzheimer's disease medications: Analysis of notifications to Regional Pharmacovigilance Centers in Northwest France 400
Cement Chemistry Calcium silicates and anhydrous Portland cement 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4369941
求助须知:如何正确求助?哪些是违规求助? 3868110
关于积分的说明 12060210
捐赠科研通 3510770
什么是DOI,文献DOI怎么找? 1926634
邀请新用户注册赠送积分活动 968550
科研通“疑难数据库(出版商)”最低求助积分说明 867564