亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of Pretreatment Multiparametric MRI to Predict Tumor Regression Pattern to Neoadjuvant Chemotherapy in Breast Cancer

逻辑回归 医学 接收机工作特性 乳腺癌 置信区间 回归 回归分析 放射科 癌症 内科学 机器学习 统计 计算机科学 数学
作者
Chen Liu,Xiaomei Huang,Xiaobo Chen,Zhenwei Shi,Chunling Liu,Yanting Liang,Xin Huang,Minglei Chen,Xin Chen,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S62-S70 被引量:2
标识
DOI:10.1016/j.acra.2023.02.024
摘要

To develop an easy-to-use model by combining pretreatment MRI and clinicopathologic features for early prediction of tumor regression pattern to neoadjuvant chemotherapy (NAC) in breast cancer.We retrospectively analyzed 420 patients who received NAC and underwent definitive surgery in our hospital from February 2012 to August 2020. Pathologic findings of surgical specimens were used as the gold standard to classify tumor regression patterns into concentric and non-concentric shrinkage. Morphologic and kinetic MRI features were both analyzed. Univariable and multivariable analyses were performed to select the key clinicopathologic and MRI features for pretreatment prediction of regression pattern. Logistic regression and six machine learning methods were used to construct prediction models, and their performance were evaluated with receiver operating characteristic curve.Two clinicopathologic variables and three MRI features were selected as independent predictors to construct prediction models. The apparent area under the curve (AUC) of seven prediction models were in the range of 0.669-0.740. The logistic regression model yielded an AUC of 0.708 (95% confidence interval [CI]: 0.658-0.759), and the decision tree model achieved the highest AUC of 0.740 (95% CI: 0.691-0.787). For internal validation, the optimism-corrected AUCs of seven models were in the range of 0.592-0.684. There was no significant difference between the AUCs of the logistic regression model and that of each machine learning model.Prediction models combining pretreatment MRI and clinicopathologic features are useful for predicting tumor regression pattern in breast cancer, which can assist to select patients who can benefit from NAC for de-escalation of breast surgery and modify treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱静静应助科研通管家采纳,获得10
9秒前
爱静静应助科研通管家采纳,获得10
9秒前
爱静静应助科研通管家采纳,获得20
9秒前
Billy应助科研通管家采纳,获得30
9秒前
Billy应助科研通管家采纳,获得30
9秒前
爱静静应助科研通管家采纳,获得30
9秒前
无风完成签到,获得积分10
10秒前
14秒前
17秒前
HH完成签到 ,获得积分10
21秒前
herococa完成签到,获得积分10
21秒前
qq完成签到,获得积分10
32秒前
超人不会飞完成签到 ,获得积分10
35秒前
49秒前
FIN发布了新的文献求助60
53秒前
59秒前
1分钟前
你博哥完成签到 ,获得积分10
1分钟前
早岁完成签到,获得积分10
1分钟前
1分钟前
andrele发布了新的文献求助10
1分钟前
高大迎曼发布了新的文献求助10
1分钟前
1分钟前
1分钟前
好梦发布了新的文献求助10
1分钟前
小斌仔发布了新的文献求助10
1分钟前
好梦完成签到,获得积分10
1分钟前
1分钟前
小斌仔完成签到,获得积分10
1分钟前
1分钟前
FIN发布了新的文献求助60
1分钟前
汉堡包应助lvsehx采纳,获得10
1分钟前
Raclen111完成签到,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
lvsehx发布了新的文献求助10
2分钟前
直率铁身完成签到,获得积分10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
材料概论 周达飞 ppt 500
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3807998
求助须知:如何正确求助?哪些是违规求助? 3352680
关于积分的说明 10359930
捐赠科研通 3068677
什么是DOI,文献DOI怎么找? 1685216
邀请新用户注册赠送积分活动 810332
科研通“疑难数据库(出版商)”最低求助积分说明 766022