亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Use of Pretreatment Multiparametric MRI to Predict Tumor Regression Pattern to Neoadjuvant Chemotherapy in Breast Cancer

逻辑回归 医学 接收机工作特性 乳腺癌 置信区间 回归 回归分析 放射科 癌症 内科学 机器学习 统计 计算机科学 数学
作者
Chen Liu,Xiaomei Huang,Xiaobo Chen,Zhenwei Shi,Chunling Liu,Yanting Liang,Xin Huang,Minglei Chen,Xin Chen,Changhong Liang,Zaiyi Liu
出处
期刊:Academic Radiology [Elsevier BV]
卷期号:30: S62-S70 被引量:3
标识
DOI:10.1016/j.acra.2023.02.024
摘要

To develop an easy-to-use model by combining pretreatment MRI and clinicopathologic features for early prediction of tumor regression pattern to neoadjuvant chemotherapy (NAC) in breast cancer.We retrospectively analyzed 420 patients who received NAC and underwent definitive surgery in our hospital from February 2012 to August 2020. Pathologic findings of surgical specimens were used as the gold standard to classify tumor regression patterns into concentric and non-concentric shrinkage. Morphologic and kinetic MRI features were both analyzed. Univariable and multivariable analyses were performed to select the key clinicopathologic and MRI features for pretreatment prediction of regression pattern. Logistic regression and six machine learning methods were used to construct prediction models, and their performance were evaluated with receiver operating characteristic curve.Two clinicopathologic variables and three MRI features were selected as independent predictors to construct prediction models. The apparent area under the curve (AUC) of seven prediction models were in the range of 0.669-0.740. The logistic regression model yielded an AUC of 0.708 (95% confidence interval [CI]: 0.658-0.759), and the decision tree model achieved the highest AUC of 0.740 (95% CI: 0.691-0.787). For internal validation, the optimism-corrected AUCs of seven models were in the range of 0.592-0.684. There was no significant difference between the AUCs of the logistic regression model and that of each machine learning model.Prediction models combining pretreatment MRI and clinicopathologic features are useful for predicting tumor regression pattern in breast cancer, which can assist to select patients who can benefit from NAC for de-escalation of breast surgery and modify treatment strategy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
14秒前
24秒前
乐乐应助ygl0217采纳,获得10
39秒前
46秒前
ygl0217发布了新的文献求助10
50秒前
1分钟前
李健应助ceeray23采纳,获得20
1分钟前
1分钟前
2分钟前
所所应助ygl0217采纳,获得10
2分钟前
2分钟前
2分钟前
ygl0217发布了新的文献求助10
2分钟前
2分钟前
ceeray23发布了新的文献求助20
2分钟前
隐形曼青应助ygl0217采纳,获得10
2分钟前
2分钟前
灵波应助科研通管家采纳,获得10
2分钟前
星辰大海应助科研通管家采纳,获得30
2分钟前
馆长举报奶酪包求助涉嫌违规
2分钟前
平常以云完成签到 ,获得积分10
3分钟前
Sylvia关注了科研通微信公众号
3分钟前
Bin完成签到,获得积分10
3分钟前
3分钟前
ygl0217发布了新的文献求助10
3分钟前
灵巧的以亦完成签到 ,获得积分10
3分钟前
馆长举报Zachary求助涉嫌违规
3分钟前
Sylvia发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
健壮的翎完成签到,获得积分10
4分钟前
馆长举报Masetti1求助涉嫌违规
4分钟前
量子星尘发布了新的文献求助10
5分钟前
ttxxcdx完成签到 ,获得积分10
5分钟前
5分钟前
祥子发布了新的文献求助10
5分钟前
6分钟前
HYQ完成签到 ,获得积分10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
An overview of orchard cover crop management 1000
二维材料在应力作用下的力学行为和层间耦合特性研究 600
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 470
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Efficacy and safety of ciprofol versus propofol in hysteroscopy: a systematic review and meta-analysis 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4834409
求助须知:如何正确求助?哪些是违规求助? 4138281
关于积分的说明 12808243
捐赠科研通 3882014
什么是DOI,文献DOI怎么找? 2134977
邀请新用户注册赠送积分活动 1155023
关于科研通互助平台的介绍 1054202