Current applications and future impact of machine learning in emerging contaminants: A review

可解释性 工作流程 计算机科学 生化工程 机器学习 风险分析(工程) 人工智能 工程类 医学 数据库
作者
Lang Lei,Ruirui Pang,Zhibang Han,Dong Wu,Bing Xie,Yinglong Su
出处
期刊:Critical Reviews in Environmental Science and Technology [Taylor & Francis]
卷期号:53 (20): 1817-1835 被引量:19
标识
DOI:10.1080/10643389.2023.2190313
摘要

With the continuous release into environments, emerging contaminants (ECs) have attracted widespread attention for the potential risks, and numerous studies have been conducted on their identification, environmental behavior bioeffects, and removal. Owing to the superiority of dealing with high-dimensional and unstructured data, a new data-driven approach, machine learning (ML), has been gradually applied in the research of ECs. This review described the fundamental principle, algorithms, and workflow of ML, and summarized advances of ML applications for typical ECs (per- and polyfluoroalkyl substances, nanoparticles, antibiotic resistance genes, endocrine-disrupting chemicals, microplastics, antibiotics, and pharmaceutical and personal care products). ML methods showed practicability, reliability, and effectiveness in predicting or analyzing the occurrence, distribution, bioeffects, and removal of ECs, and various algorithms and derived models were developed and optimized to obtain better performance. Moreover, the size and homogeneity of the data set strongly influence the application of ML, and choosing the appropriate ML models with different characteristics is crucial for addressing specific problems related to the data sets. Future efforts should focus on improving the quality of data set and adopting more advanced algorithms, developing the potential of quantitative structure-activity relationship, and promoting the applicability domains and interpretability of models. In addition, the development of codeless ML tools will benefit the accessibility of ML models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
4秒前
艾叶完成签到,获得积分10
4秒前
zz52678发布了新的文献求助10
5秒前
怕黑香菇发布了新的文献求助10
7秒前
wan完成签到,获得积分20
8秒前
9秒前
科研通AI5应助Chen采纳,获得10
14秒前
14秒前
半山完成签到,获得积分10
17秒前
情怀应助wyby采纳,获得10
18秒前
22秒前
汪洋发布了新的文献求助10
26秒前
27秒前
31秒前
共浅完成签到,获得积分10
32秒前
健壮不斜发布了新的文献求助10
33秒前
爆米花应助WangY1263采纳,获得10
33秒前
wyby发布了新的文献求助10
33秒前
有梦想的咸鱼完成签到,获得积分10
34秒前
董科研严发布了新的文献求助10
35秒前
共浅发布了新的文献求助10
36秒前
我是老大应助勤恳的宛菡采纳,获得10
37秒前
39秒前
40秒前
44秒前
邀月发布了新的文献求助10
45秒前
可爱的函函应助跳跃从雪采纳,获得10
45秒前
46秒前
李爱国应助wqb196采纳,获得10
48秒前
清爽老九应助明亮的代灵采纳,获得20
49秒前
隐形曼青应助ss采纳,获得10
49秒前
科研小白完成签到,获得积分10
50秒前
WangY1263发布了新的文献求助10
53秒前
肥宅快乐水完成签到,获得积分10
54秒前
CipherSage应助健壮不斜采纳,获得10
56秒前
天天完成签到 ,获得积分10
57秒前
58秒前
Mp4完成签到 ,获得积分10
59秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Platinum-group elements : mineralogy, geology, recovery 260
Geopora asiatica sp. nov. from Pakistan 230
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3780433
求助须知:如何正确求助?哪些是违规求助? 3325851
关于积分的说明 10224474
捐赠科研通 3040916
什么是DOI,文献DOI怎么找? 1669131
邀请新用户注册赠送积分活动 799013
科研通“疑难数据库(出版商)”最低求助积分说明 758653