清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Development and clinical validation of deep learning-based immunohistochemistry prediction models for subtyping and staging of gastrointestinal cancers

亚型 医学 肝病学 内科学 免疫组织化学 外科肿瘤学 肿瘤科 病理 普通外科 计算机科学 程序设计语言
作者
Junxiao Wang,Shiying Zhang,Jia Li,Mei Deng,Zhi Zeng,Zehua Dong,Fang-Fang Chen,Wenzhao Liu,Lianlian Wu,Honggang Yu
出处
期刊:BMC Gastroenterology [BioMed Central]
卷期号:25 (1)
标识
DOI:10.1186/s12876-025-04045-0
摘要

Immunohistochemistry (IHC) is a critical tool for tumor diagnosis and treatment, but it is time and tissue consuming, and highly dependent on skilled laboratory technicians. Recently, deep learning-based IHC biomarker prediction models have been widely developed, but few investigations have explored their clinical application effectiveness. In this study, we aimed to create an automatic pipeline for the construction of deep learning models to generate AI-IHC (Artificial Intelligence) output using H&E whole slide images (WSIs) and compared the pathology reports by pathologists on AI-IHC versus conventional IHC. We obtained 134 WSIs including H&E and IHC pairs, and automatically extracted 415,463 tiles from H&E slides for model construction based on the annotation transfer from IHC slides. Five IHC biomarker prediction models (P40, Pan-CK, Desmin, P53, Ki-67) were developed to support a range of clinically relevant diagnostic applications across various gastrointestinal cancer subtypes, including esophageal, gastric, and colorectal cancers. The Ki-67 proliferation index was quantitatively assessed using digital image analysis. The AUCs of five IHC biomarker models ranged from 0.90 to 0.96 and the accuracies were between 83.04 and 90.81%. Additional 150 WSIs from 30 patients were collected to assess the effectiveness of AI-IHC through the multi-reader multi-case (MRMC) study. Each case was read by three pathologists, once on AI-IHC and once on conventional IHC with a minimum 2-week washout period. The results indicate that the consistency rates of pathologists in AI and conventional IHC cases were high in Desmin, Pan-CK and P40 (96.67-100%) while moderate in the P53 (70.00%). We also evaluated the T-stage through the staining of these IHC biomarkers and the consistency rate was 86.36%. Furthermore, the Ki-67 proliferation index, as reported by AI-IHC, showed a variability ranging from 17.35% ±16.2% compared to conventional IHC, with ICC of 0.415 (P = 0.015) between these two groups. Here, we leveraged automatic tile-level annotations from H&E slides to efficiently develop deep learning-based IHC biomarker models, achieving AUCs between 0.90 and 0.96. AI generated IHC showed substantial concordance with conventional IHC across most markers, supporting its potential as an assistive tool in routine diagnostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
23秒前
两个榴莲完成签到,获得积分0
29秒前
77完成签到 ,获得积分10
32秒前
大医仁心完成签到 ,获得积分10
46秒前
1分钟前
fabius0351完成签到 ,获得积分10
1分钟前
2分钟前
hwen1998完成签到 ,获得积分10
2分钟前
美丽的冰枫完成签到,获得积分10
2分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
3分钟前
3分钟前
morichoc发布了新的文献求助10
3分钟前
小新小新完成签到 ,获得积分10
3分钟前
阔达白凡完成签到,获得积分10
3分钟前
研友_ngqoE8完成签到,获得积分10
3分钟前
3分钟前
激动的似狮完成签到,获得积分10
3分钟前
义气的断秋完成签到,获得积分10
3分钟前
GingerF应助lili采纳,获得50
4分钟前
鲁成危完成签到,获得积分10
4分钟前
如歌完成签到,获得积分10
4分钟前
5分钟前
5分钟前
大饼完成签到 ,获得积分10
6分钟前
上官以山完成签到,获得积分10
6分钟前
6分钟前
科研通AI5应助犹豫幻丝采纳,获得20
6分钟前
7分钟前
科研啄木鸟完成签到 ,获得积分10
7分钟前
8分钟前
8分钟前
舒心糖豆完成签到,获得积分10
9分钟前
10分钟前
计划完成签到,获得积分10
10分钟前
小叶子发布了新的文献求助10
10分钟前
11分钟前
11分钟前
Hunter发布了新的文献求助10
11分钟前
科研通AI6应助spike采纳,获得10
11分钟前
如意秋珊完成签到 ,获得积分10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
Founding Fathers The Shaping of America 500
中国减肥产品行业市场发展现状及前景趋势与投资分析研究报告(2025-2030版) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4513957
求助须知:如何正确求助?哪些是违规求助? 3958947
关于积分的说明 12270823
捐赠科研通 3620656
什么是DOI,文献DOI怎么找? 1992564
邀请新用户注册赠送积分活动 1028888
科研通“疑难数据库(出版商)”最低求助积分说明 919966