Construction and Application of Carbon Emissions Estimation Model for China Based on Gradient Boosting Algorithm

中国 温室气体 环境科学 计算机科学 算法 遥感 地质学 地理 海洋学 考古
作者
Dongjie Guan,Yongjiang Shi,Lilei Zhou,Xusen Zhu,Demei Zhao,Guochuan Peng,Xiujuan He
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:17 (14): 2383-2383
标识
DOI:10.3390/rs17142383
摘要

Accurate forecasting of carbon emissions at the county level is critical to support China’s dual-carbon goals. However, most current studies are limited to national or provincial scales, employing traditional statistical methods inadequate for capturing complex nonlinear interactions and spatiotemporal dynamics at finer resolutions. To overcome these limitations, this study develops and validates a high-resolution predictive model using advanced gradient boosting algorithms—Gradient Boosting Decision Tree (GBDT), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM)—based on socioeconomic, industrial, and environmental data from 2732 Chinese counties during 2008–2017. Key variables were selected through correlation analysis, missing values were interpolated using K-means clustering, and model parameters were systematically optimized via grid search and cross-validation. Among the algorithms tested, LightGBM achieved the best performance (R2 = 0.992, RMSE = 0.297), demonstrating both robustness and efficiency. Spatial–temporal analyses revealed that while national emissions are slowing, the eastern region is approaching stabilization, whereas emissions in central and western regions are projected to continue rising through 2027. Furthermore, SHapley Additive exPlanations (SHAP) were applied to interpret the marginal and interaction effects of key variables. The results indicate that GDP, energy intensity, and nighttime lights exert the greatest influence on model predictions, while ecological indicators such as NDVI exhibit negative associations. SHAP dependence plots further reveal nonlinear relationships and regional heterogeneity among factors. The key innovation of this study lies in constructing a scalable and interpretable county-level carbon emissions model that integrates gradient boosting with SHAP-based variable attribution, overcoming limitations in spatial resolution and model transparency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
algain完成签到 ,获得积分10
1秒前
1秒前
1秒前
bamboo应助saturn采纳,获得10
1秒前
CHYzzZ完成签到,获得积分10
2秒前
wild发布了新的文献求助50
2秒前
123完成签到,获得积分10
3秒前
小蘑菇应助卓梨采纳,获得10
4秒前
4秒前
充电宝应助卡其嘛亮采纳,获得10
5秒前
ABCDEFG应助清秀映阳采纳,获得50
6秒前
SciGPT应助xie采纳,获得10
6秒前
6秒前
lorixu发布了新的文献求助30
6秒前
7秒前
和谐的雅旋完成签到,获得积分20
7秒前
小璐璐呀完成签到,获得积分10
7秒前
7秒前
平常的仙人掌完成签到,获得积分10
7秒前
7秒前
8秒前
飘逸之玉完成签到,获得积分10
8秒前
小六发布了新的文献求助10
8秒前
SHUANG发布了新的文献求助10
9秒前
石破天惊完成签到,获得积分10
9秒前
9秒前
科研通AI6应助霸气的老姆采纳,获得10
9秒前
10秒前
ZXQ发布了新的文献求助10
10秒前
乐乐应助斯文曲奇采纳,获得10
10秒前
10秒前
11秒前
11秒前
12秒前
量子星尘发布了新的文献求助10
12秒前
tjj发布了新的文献求助10
13秒前
13秒前
13秒前
nuoyefenfei完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Разработка технологических основ обеспечения качества сборки высокоточных узлов газотурбинных двигателей,2000 1000
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
Optimization and Learning via Stochastic Gradient Search 500
Nuclear Fuel Behaviour under RIA Conditions 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4697977
求助须知:如何正确求助?哪些是违规求助? 4067266
关于积分的说明 12574668
捐赠科研通 3766799
什么是DOI,文献DOI怎么找? 2080239
邀请新用户注册赠送积分活动 1108320
科研通“疑难数据库(出版商)”最低求助积分说明 986664