A Classification-Based Machine Learning Approach to Understand and Infer the Ultimate Successful Bioprinting Process

计算机科学 过程(计算) 人工智能 机器学习 程序设计语言
作者
Shah Limon,Rokeya Sarah,Md Ahasan Habib
标识
DOI:10.1115/msec2025-155471
摘要

Abstract 3D bioprinting emerges as a prominent tool for regenerative medicine and biomedical applications. Among extrusion-based, laser-assisted, and drop-on-demand techniques, extrusion-based bioprinting receives greater attention due to its capability to handle a variety of material types while supporting higher cell densities. Three major tasks in a successful bioprinting process are bioink formulation, optimizing print process parameters (e.g., extrusion pressure, nozzle diameter, print speed and distance, and environment) to obtain the desired construct, and finally targeted cell survivability and growth in the construct. Most existing works focus on each task category and consider each process optimization individually. However, the goal is to make bioprinting successful with the sequential success of all these three task categories. In this work, we have considered all three task categories (e.g., bioink formulation, optimizing printing parameters, and fostering targeted cell growth and survivability) to understand the success of the bioprinting process. In this article, we developed a classification-based machine learning model to predict the success of extrusion-based bioprinting using 72 experimental datasets comprising process parameters, rheological properties, filament fidelity, and cell viability. The model achieved an 83% accuracy rate, demonstrating its potential to assist researchers in identifying optimal printing conditions and reducing trial-and-error experimentation. By providing a data-driven assessment of bioprinting outcomes, this approach can enhance efficiency and resource utilization in bioprinting research and applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
苦瓜大王发布了新的文献求助10
3秒前
JEssie发布了新的文献求助10
3秒前
4秒前
饭饭发布了新的文献求助10
4秒前
sqqq完成签到 ,获得积分10
5秒前
jiao完成签到 ,获得积分10
5秒前
5秒前
8秒前
吉以寒完成签到,获得积分10
8秒前
拿铁要加铁完成签到,获得积分10
10秒前
清秀黎昕完成签到,获得积分10
11秒前
隐形曼青应助tangyu采纳,获得10
12秒前
研友_VZG7GZ应助丁丁鱼采纳,获得10
12秒前
12秒前
张鸿飞完成签到,获得积分10
13秒前
14秒前
HotnessK发布了新的文献求助10
14秒前
科研小白完成签到 ,获得积分10
15秒前
16秒前
Gyrate完成签到,获得积分10
16秒前
absb发布了新的文献求助10
16秒前
Lothar完成签到,获得积分10
17秒前
Ade发布了新的文献求助10
18秒前
朝暮完成签到 ,获得积分10
18秒前
17871635733完成签到,获得积分10
18秒前
DMPK完成签到,获得积分10
20秒前
文刀海巾台完成签到 ,获得积分10
21秒前
24秒前
25秒前
villanelle完成签到 ,获得积分10
26秒前
26秒前
ZZ发布了新的文献求助10
28秒前
风里等你发布了新的文献求助10
28秒前
yiyi发布了新的文献求助10
29秒前
小刘发布了新的文献求助10
29秒前
fanyouxin发布了新的文献求助10
32秒前
执着的以筠关注了科研通微信公众号
32秒前
微笑幻波发布了新的文献求助10
33秒前
35秒前
愉快的楷瑞完成签到,获得积分10
37秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339044
求助须知:如何正确求助?哪些是违规求助? 4475985
关于积分的说明 13930102
捐赠科研通 4371418
什么是DOI,文献DOI怎么找? 2401804
邀请新用户注册赠送积分活动 1394843
关于科研通互助平台的介绍 1366677