Spatial–Spectral 1DSwin Transformer With Groupwise Feature Tokenization for Hyperspectral Image Classification

计算机科学 高光谱成像 人工智能 模式识别(心理学) 像素 杠杆(统计) 特征提取 计算机视觉
作者
Yifei Xu,Yixuan Xie,Bicheng Li,Chuanqi Xie,Yongchuan Zhang,Aichen Wang,Li Zhu
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:61: 1-16 被引量:10
标识
DOI:10.1109/tgrs.2023.3294424
摘要

The Hyperspectral Image (HSI) classification aims to assign each pixel to a land cover category. It is receiving increasing attention from both industry and academia. The main challenge lies in capturing reliable and informative spatial and spectral dependencies concealed in the HSI for each class. To address the challenge, we propose a Spatial-Spectral 1DSwin Transformer with Group-wise Feature Tokenization (SS1DSwin) for HSI classification. Specifically, we reveal local and hierarchical spatial-spectral relationships from two different perspectives. It mainly consists of a Group-wise Feature Tokenization Module (GFTM) and a 1DSwin Transformer with Cross-block Normalized Connection Module (TCNCM). For GFTM, we reorganize an image patch into overlapping cubes, and further generate group-wise token embeddings with Multi-head Self-Attention (MSA) to learn the local spatial-spectral relationship along the spatial dimension. For TCNCM, we adopt the shifted windowing strategy when acquiring the hierarchical spatial-spectral relationship along the spectral dimension with 1D Window based Multi-head Self-Attention (1DW-MSA) and 1D Shifted Window based Multi-head Self-Attention (1DSW-MSA), and leverage Cross-block Normalized Connection (CNC) to adaptively fuse the feature maps from different blocks. In SS1DSwin, we apply these two modules in order and predict the class label for each pixel. To test the effectiveness of the proposed method, extensive experiments are conducted on four HSI datasets, and the results indicate that SS1DSwin outperforms several current state-of-the-art methods. The source code of the proposed method is available at https://github.com/Minato252/SS1DSwin.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
闪闪的谷梦完成签到 ,获得积分10
3秒前
milv5完成签到,获得积分10
4秒前
8秒前
8秒前
夏夏完成签到,获得积分10
8秒前
bkagyin应助清新的静枫采纳,获得10
8秒前
高高的易槐完成签到 ,获得积分10
9秒前
李爱国应助读书的时候采纳,获得30
9秒前
火星上的手链应助flyingF采纳,获得10
10秒前
wickedzz完成签到,获得积分0
10秒前
sjh驳回了顾矜应助
11秒前
星辰大海应助ww采纳,获得10
11秒前
boardblack发布了新的文献求助10
13秒前
16秒前
17秒前
申梦兵发布了新的文献求助10
19秒前
如意白易发布了新的文献求助10
20秒前
在水一方应助ohooo采纳,获得10
20秒前
WXY发布了新的文献求助10
21秒前
是莉莉娅完成签到,获得积分10
21秒前
万灵竹发布了新的文献求助10
21秒前
22秒前
22秒前
23秒前
24秒前
27秒前
乐乐应助读书的时候采纳,获得30
27秒前
博qb完成签到,获得积分10
28秒前
PG完成签到 ,获得积分10
28秒前
29秒前
29秒前
Xcc发布了新的文献求助10
30秒前
超级盼烟完成签到,获得积分10
30秒前
如意枫叶发布了新的文献求助10
30秒前
Shale完成签到,获得积分10
31秒前
33秒前
LJQ完成签到,获得积分10
34秒前
WXY完成签到,获得积分20
35秒前
英俊的铭应助大魔王512采纳,获得10
35秒前
桐桐应助称心的大米采纳,获得10
35秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4044620
求助须知:如何正确求助?哪些是违规求助? 3582494
关于积分的说明 11386568
捐赠科研通 3309337
什么是DOI,文献DOI怎么找? 1821633
邀请新用户注册赠送积分活动 893828
科研通“疑难数据库(出版商)”最低求助积分说明 815875