Amalgamated Pharmacoinformatics Study to Investigate the Mechanism of Xiao Jianzhong Tang against Chronic Atrophic Gastritis

对接(动物) 化学 自动停靠 AKT1型 山奈酚 柚皮素 药理学 计算生物学 医学 生物化学 类黄酮 蛋白激酶B 生物信息学 信号转导 生物 护理部 基因 抗氧化剂
作者
Lian Xu,Kaidi Fan,Xuemei Qin,Yuetao Liu
出处
期刊:Current Computer - Aided Drug Design [Bentham Science Publishers]
卷期号:20 (5): 598-615 被引量:1
标识
DOI:10.2174/1573409919666230720141115
摘要

Background: Traditional Chinese medicine (TCM) Xiaojianzhong Tang (XJZ) has a favorable efficacy in the treatment of chronic atrophic gastritis (CAG). However, its pharmacological mechanism has not been fully explained. Objective: The purpose of this study was to find the potential mechanism of XJZ in the treatment of CAG using pharmacocoinformatics approaches. Methods: Network pharmacology was used to screen out the key compounds and key targets, MODELLER and GNNRefine were used to repair and refine proteins, Autodock vina was employed to perform molecular docking, Δ Lin_F9XGB was used to score the docking results, and Gromacs was used to perform molecular dynamics simulations (MD). Results: Kaempferol, licochalcone A, and naringenin, were obtained as key compounds, while AKT1, MAPK1, MAPK14, RELA, STAT1, and STAT3 were acquired as key targets. Among docking results, 12 complexes scored greater than five. They were run for 50ns MD. The free binding energy of AKT1-licochalcone A and MAPK1-licochalcone A was less than -15 kcal/mol and AKT1-naringenin and STAT3-licochalcone A was less than -9 kcal/mol. These complexes were crucial in XJZ treating CAG. Conclusion: Our findings suggest that licochalcone A could act on AKT1, MAPK1, and STAT3, and naringenin could act on AKT1 to play the potential therapeutic effect on CAG. The work also provides a powerful approach to interpreting the complex mechanism of TCM through the amalgamation of network pharmacology, deep learning-based protein refinement, molecular docking, machine learning-based binding affinity estimation, MD simulations, and MM-PBSA-based estimation of binding free energy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
panpan发布了新的文献求助10
刚刚
六沉完成签到,获得积分10
刚刚
Juliet发布了新的文献求助10
1秒前
箴言完成签到,获得积分10
3秒前
小二郎应助久久采纳,获得10
3秒前
3秒前
余味应助秋分采纳,获得10
3秒前
科研通AI5应助Cccc小懒采纳,获得10
4秒前
song完成签到,获得积分20
4秒前
4秒前
科研通AI2S应助无尘采纳,获得10
4秒前
5秒前
5秒前
小蘑菇应助ordin采纳,获得10
5秒前
6秒前
研友_LjMy08完成签到,获得积分10
6秒前
junjun完成签到,获得积分20
7秒前
冷静书白发布了新的文献求助20
7秒前
7秒前
7秒前
7秒前
8秒前
wjw123发布了新的文献求助20
8秒前
8秒前
科研通AI5应助杨瑞奇采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
wfkjxywdq完成签到,获得积分10
9秒前
幸福广山发布了新的文献求助10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
vicky完成签到 ,获得积分10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
11哥应助科研通管家采纳,获得10
10秒前
song发布了新的文献求助30
10秒前
11哥应助科研通管家采纳,获得10
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
iNk应助科研通管家采纳,获得20
10秒前
传奇3应助科研通管家采纳,获得10
10秒前
领导范儿应助潘多拉采纳,获得10
10秒前
10秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790196
求助须知:如何正确求助?哪些是违规求助? 3334887
关于积分的说明 10272750
捐赠科研通 3051350
什么是DOI,文献DOI怎么找? 1674626
邀请新用户注册赠送积分活动 802730
科研通“疑难数据库(出版商)”最低求助积分说明 760846