激光诱导击穿光谱
单变量
光谱学
分析化学(期刊)
融合
校准
线性回归
多元统计
基质(化学分析)
传感器融合
材料科学
化学
数学
人工智能
统计
色谱法
计算机科学
物理
复合材料
哲学
量子力学
语言学
作者
Diego Victor Babos,Jéssica Franciele Kaminski Ramos,Gabriel Carlos Francisco,V. de M. Benites,D. M. B. P. Milori
出处
期刊:Journal of The Optical Society of America B-optical Physics
[The Optical Society]
日期:2023-01-18
卷期号:40 (3): 654-654
被引量:10
摘要
Laser-induced breakdown spectroscopy (LIBS) and digital images were evaluated in the modeling for the prediction of Al, Ca, Fe, Mg, and P contents in mineral fertilizer samples. For modeling, univariate [matrix-matching calibration (MMC)] and multivariate [multiple linear regression (MLR) using only LIBS data, and data fusion (LIBS + digital image)] calibration strategies were evaluated. The predictive capacity of the models was increased in the following order: MMC<MLR (LIBS) < data fusion. Compared with the MMC and MLR (LIBS data only), the root mean square error (data fusion) values were 17% to 80% lower, demonstrating the improvement in accuracy.
科研通智能强力驱动
Strongly Powered by AbleSci AI