HoVer-Trans: Anatomy-Aware HoVer-Transformer for ROI-Free Breast Cancer Diagnosis in Ultrasound Images

可解释性 人工智能 计算机科学 乳腺超声检查 乳腺癌 感兴趣区域 杠杆(统计) 超声波 模式识别(心理学) 计算机辅助诊断 计算机辅助设计 乳腺摄影术 放射科 医学 癌症 内科学 工程类 工程制图
作者
Yuhao Mo,Chu Han,Yü Liu,Min Liu,Zhenwei Shi,Jiatai Lin,Bingchao Zhao,Chunwang Huang,Bingjiang Qiu,Yanfen Cui,Lei Wu,Xipeng Pan,Zeyan Xu,Xiaomei Huang,Zhenhui Li,Zaiyi Liu,Ying Wang,Changhong Liang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1696-1706 被引量:74
标识
DOI:10.1109/tmi.2023.3236011
摘要

Ultrasonography is an important routine examination for breast cancer diagnosis, due to its non-invasive, radiation-free and low-cost properties. However, the diagnostic accuracy of breast cancer is still limited due to its inherent limitations. Then, a precise diagnose using breast ultrasound (BUS) image would be significant useful. Many learning-based computer-aided diagnostic methods have been proposed to achieve breast cancer diagnosis/lesion classification. However, most of them require a pre-define region of interest (ROI) and then classify the lesion inside the ROI. Conventional classification backbones, such as VGG16 and ResNet50, can achieve promising classification results with no ROI requirement. But these models lack interpretability, thus restricting their use in clinical practice. In this study, we propose a novel ROI-free model for breast cancer diagnosis in ultrasound images with interpretable feature representations.We leverage the anatomical prior knowledge that malignant and benign tumors have different spatial relationships between different tissue layers, and propose a HoVer-Transformer to formulate this prior knowledge. The proposed HoVer-Trans block extracts the inter- and intra-layer spatial information horizontally and vertically . We conduct and release an open dataset GDPH&SYSUCC for breast cancer diagnosis in BUS. The proposed model is evaluated in three datasets by comparing with four CNN-based models and three vision transformer models via five-fold cross validation. It achieves state-of-the-art classification performance ( GDPH&SYSUCC AUC: 0.924, ACC: 0.893, Spec: 0.836, Sens: 0.926) with the best model interpretability. In the meanwhile, our proposed model outperforms two senior sonographers on the breast cancer diagnosis when only one BUS image is given ( GDPH&SYSUCC -AUC ours: 0.924 vs. reader1: 0.825 vs. reader2: 0.820).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洁净艳一完成签到,获得积分10
1秒前
happyou发布了新的文献求助10
4秒前
NexusExplorer应助海绵宝宝采纳,获得10
5秒前
科研通AI6应助sumu采纳,获得20
5秒前
5秒前
三三得九完成签到 ,获得积分10
6秒前
深情安青应助拼搏的冰蝶采纳,获得10
6秒前
9秒前
9秒前
HSY发布了新的文献求助10
9秒前
13秒前
深情安青应助负责吃饭采纳,获得10
13秒前
科研通AI6应助liang2508采纳,获得10
13秒前
jj完成签到,获得积分10
14秒前
闰土完成签到,获得积分10
14秒前
HSY完成签到,获得积分10
16秒前
xuuu完成签到,获得积分10
19秒前
佳儿发布了新的文献求助10
19秒前
20秒前
渊澈发布了新的文献求助10
24秒前
Persevere完成签到,获得积分10
25秒前
长情的寇完成签到 ,获得积分10
25秒前
25秒前
达瓦里希完成签到 ,获得积分10
25秒前
26秒前
潇潇发布了新的文献求助10
26秒前
27秒前
阿八八八八八八八八八完成签到,获得积分10
27秒前
27秒前
逃学威龙完成签到,获得积分10
27秒前
Li完成签到 ,获得积分10
28秒前
keysoz完成签到,获得积分10
28秒前
西瓜汽水完成签到,获得积分10
28秒前
zzdoc发布了新的文献求助10
29秒前
科研通AI6应助liang2508采纳,获得10
30秒前
zz完成签到,获得积分10
32秒前
科研通AI6应助晚安采纳,获得10
32秒前
喜欢猫完成签到,获得积分10
34秒前
35秒前
35秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Numerical controlled progressive forming as dieless forming 400
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5381546
求助须知:如何正确求助?哪些是违规求助? 4504793
关于积分的说明 14019361
捐赠科研通 4414087
什么是DOI,文献DOI怎么找? 2424581
邀请新用户注册赠送积分活动 1417566
关于科研通互助平台的介绍 1395351