HoVer-Trans: Anatomy-Aware HoVer-Transformer for ROI-Free Breast Cancer Diagnosis in Ultrasound Images

可解释性 人工智能 计算机科学 乳腺超声检查 乳腺癌 感兴趣区域 杠杆(统计) 超声波 模式识别(心理学) 计算机辅助诊断 计算机辅助设计 乳腺摄影术 放射科 医学 癌症 内科学 工程类 工程制图
作者
Yuhao Mo,Chu Han,Yu Liu,Min Liu,Zhenwei Shi,Jiatai Lin,Bingchao Zhao,Chunwang Huang,Bingjiang Qiu,Yanfen Cui,Lei Wu,Xipeng Pan,Zeyan Xu,Xiaomei Huang,Zhenhui Li,Zaiyi Liu,Ying Wang,Changhong Liang
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (6): 1696-1706 被引量:35
标识
DOI:10.1109/tmi.2023.3236011
摘要

Ultrasonography is an important routine examination for breast cancer diagnosis, due to its non-invasive, radiation-free and low-cost properties. However, the diagnostic accuracy of breast cancer is still limited due to its inherent limitations. Then, a precise diagnose using breast ultrasound (BUS) image would be significant useful. Many learning-based computer-aided diagnostic methods have been proposed to achieve breast cancer diagnosis/lesion classification. However, most of them require a pre-define region of interest (ROI) and then classify the lesion inside the ROI. Conventional classification backbones, such as VGG16 and ResNet50, can achieve promising classification results with no ROI requirement. But these models lack interpretability, thus restricting their use in clinical practice. In this study, we propose a novel ROI-free model for breast cancer diagnosis in ultrasound images with interpretable feature representations.We leverage the anatomical prior knowledge that malignant and benign tumors have different spatial relationships between different tissue layers, and propose a HoVer-Transformer to formulate this prior knowledge. The proposed HoVer-Trans block extracts the inter- and intra-layer spatial information horizontally and vertically . We conduct and release an open dataset GDPH&SYSUCC for breast cancer diagnosis in BUS. The proposed model is evaluated in three datasets by comparing with four CNN-based models and three vision transformer models via five-fold cross validation. It achieves state-of-the-art classification performance ( GDPH&SYSUCC AUC: 0.924, ACC: 0.893, Spec: 0.836, Sens: 0.926) with the best model interpretability. In the meanwhile, our proposed model outperforms two senior sonographers on the breast cancer diagnosis when only one BUS image is given ( GDPH&SYSUCC -AUC ours: 0.924 vs. reader1: 0.825 vs. reader2: 0.820).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丁昆发布了新的文献求助30
2秒前
舒适怀寒完成签到 ,获得积分10
3秒前
4秒前
cdercder应助MY采纳,获得10
4秒前
平淡路人完成签到,获得积分10
7秒前
没事就是玩发布了新的文献求助100
9秒前
丁昆完成签到,获得积分10
9秒前
不安豁完成签到,获得积分10
9秒前
Jenkin发布了新的文献求助10
12秒前
闲来逛逛007完成签到 ,获得积分10
16秒前
gsj完成签到 ,获得积分10
18秒前
18秒前
18秒前
111关闭了111文献求助
19秒前
卡卡西应助123号采纳,获得10
19秒前
20秒前
song完成签到 ,获得积分10
22秒前
ruiheng发布了新的文献求助10
22秒前
呆萌芙蓉发布了新的文献求助10
23秒前
ANESTHESIA_XY完成签到 ,获得积分10
24秒前
25秒前
25秒前
丫丫发布了新的文献求助10
29秒前
脑洞疼应助葡萄茶茶果采纳,获得10
31秒前
科研通AI2S应助Elytra采纳,获得10
33秒前
33秒前
嘎发完成签到,获得积分10
34秒前
李健的小迷弟应助谢谢采纳,获得10
34秒前
发一篇Nature完成签到 ,获得积分10
35秒前
zzz完成签到,获得积分10
36秒前
流沙完成签到,获得积分10
36秒前
小蓝完成签到,获得积分10
37秒前
曾经的依风完成签到,获得积分10
38秒前
38秒前
丫丫完成签到 ,获得积分10
39秒前
scinature完成签到,获得积分10
42秒前
43秒前
45秒前
YUYUYU完成签到,获得积分10
47秒前
yx完成签到,获得积分10
49秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Understanding Interaction in the Second Language Classroom Context 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3808961
求助须知:如何正确求助?哪些是违规求助? 3353681
关于积分的说明 10366466
捐赠科研通 3069917
什么是DOI,文献DOI怎么找? 1685835
邀请新用户注册赠送积分活动 810750
科研通“疑难数据库(出版商)”最低求助积分说明 766320