The relationship between anxious traits and learning about changes in stochasticity and volatility

作者
Brónagh McCoy,Rebecca Lawson
出处
期刊:PLOS Computational Biology [Public Library of Science]
卷期号:21 (10): e1013646-e1013646
标识
DOI:10.1371/journal.pcbi.1013646
摘要

Anxiety is known to alter learning in uncertain environments. Experimental paradigms and computational models addressing these differences have mainly assessed the impact of volatility, with more highly anxious individuals showing a reduced adaptation of learning rate in volatile compared to stable environments. Previous research has not, however, independently assessed the impact of both changes in volatility, i.e., reversals in reward contingency, and changes in stochasticity (noise) in the same individuals. Here, in an original online study (Experiment 1; N = 80) and a pre-registered replication attempt (Experiment 2; N = 160), we use a simple probabilistic reversal learning paradigm to independently manipulate the level of volatility and noise at the experimental level in a fully orthogonal design. We replicate previous studies showing general increases, irrespective of anxiety levels, in positive learning rate (Experiment 1) and negative learning rate (Experiments 1 and 2) for high compared to low volatility, but here only in the context of low noise. Across both experiments, there was an interaction between volatility and noise on behaviour, with more win-stay responses for high compared to low volatility under low noise, but similar or fewer win-stay responses for the same comparison under high noise. The impact of anxious traits presented differently across experiments; in Experiment 1, increases in lose-shift responses in high versus low noise conditions scaled with level of anxious traits, whereas in Experiment 2, there was a full interaction between volatility, noise and anxious traits on win-stay behaviour. These anxiety-related lose-shift or win-stay differences were reflected in their corresponding negative and positive reinforcement learning rate parameters, respectively. Experiment 2 represents a more robust set of results with a larger sample size, balanced gender representation, and extended block order balancing. These findings suggest that changes in both sources of uncertainty - stochasticity and volatility - should be carefully considered when investigating learning and how learning is shaped by anxiety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘿哈完成签到,获得积分10
刚刚
刚刚
yang发布了新的社区帖子
1秒前
2秒前
3秒前
3秒前
4秒前
雪落发布了新的文献求助10
5秒前
刘世玲发布了新的文献求助10
6秒前
ff发布了新的文献求助10
7秒前
7秒前
maguodrgon发布了新的文献求助10
9秒前
10秒前
ding应助LLL采纳,获得10
10秒前
英俊的铭应助LLL采纳,获得10
10秒前
shice951229发布了新的文献求助10
10秒前
Smile完成签到,获得积分20
10秒前
火龙果完成签到,获得积分10
11秒前
12秒前
13秒前
14秒前
tjunqi完成签到,获得积分10
14秒前
浮游应助震动的听安采纳,获得10
16秒前
Alico完成签到,获得积分10
16秒前
英姑应助zyl采纳,获得10
16秒前
17秒前
17秒前
Dana发布了新的文献求助10
18秒前
AYEFORBIDER完成签到,获得积分10
18秒前
18秒前
多多完成签到,获得积分20
21秒前
斯文败类应助adverse采纳,获得10
21秒前
22秒前
22秒前
23秒前
小蘑菇应助yqsf789采纳,获得10
24秒前
shice951229发布了新的文献求助10
24秒前
宁秘发布了新的文献求助10
24秒前
田様应助开朗草丛采纳,获得10
24秒前
糟糕的铁锤应助xxsw采纳,获得278
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Artificial Intelligence driven Materials Design 600
Comparing natural with chemical additive production 500
Machine Learning in Chemistry 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5194958
求助须知:如何正确求助?哪些是违规求助? 4377124
关于积分的说明 13631420
捐赠科研通 4232342
什么是DOI,文献DOI怎么找? 2321565
邀请新用户注册赠送积分活动 1319686
关于科研通互助平台的介绍 1270113