清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Using cross-species co-expression to predict metabolic interactions in microbiomes

作者
Robert A. Koetsier,Zachary L. Reitz,Clara Belzer,Marc G. Chevrette,Jo Handelsman,Yijun Zhu,Justin J. J. van der Hooft,Marnix H. Medema
出处
期刊:MSystems [American Society for Microbiology]
卷期号:: e0132125-e0132125
标识
DOI:10.1128/msystems.01321-25
摘要

ABSTRACT In microbial ecosystems, metabolic interactions are key determinants of species’ relative abundance and activity. Given the immense number of possible interactions in microbial communities, their experimental characterization is best guided by testable hypotheses generated through computational predictions. However, widely adopted software tools—such as those utilizing microbial co-occurrence—typically fail to highlight the pathways underlying these interactions. Bridging this gap will require methods that utilize microbial activity data to infer putative target pathways for experimental validation. In this study, we explored a novel approach by applying cross-species co-expression to predict interactions from microbial co-culture RNA-sequencing data. Specifically, we investigated the extent to which co-expression between genes and pathways of different bacterial species can predict competition, cross-feeding, and specialized metabolic interactions. Our analysis of the Mucin and Diet-based Minimal Microbiome (MDb-MM) data yielded results consistent with previous findings and demonstrated the method’s potential to identify pathways that are subject to resource competition. Our analysis of the Hitchhikers of the Rhizosphere (THOR) data showed links between related specialized functions, for instance, between antibiotic and multidrug efflux system expression. Additionally, siderophore co-expression and further evidence suggested that increased siderophore production of the Pseudomonas koreensis koreenceine BGC deletion-mutant drives siderophore production in the other community members. In summary, our findings confirm the feasibility of using cross-species co-expression to predict pathways potentially involved in microbe-microbe interactions. We anticipate that the approach will also facilitate the discovery of novel gene functions through their association with other species’ metabolic pathways, for example, those involved in antibiotic response. IMPORTANCE An improved mechanistic understanding of microbial interactions can guide targeted interventions or inform the rational design of microbial communities to optimize them for applications such as pathogen control, food fermentation, and various biochemical processes. Existing methodologies for inferring the mechanisms behind microbial interactions often rely on complex model-building and are, therefore, sensitive to the introduction of biases from the incorporated existing knowledge and model-building assumptions. We highlight the microbial interaction prediction potential of cross-species co-expression analysis, which contrasts with these methods by its data-driven nature. We describe the utility of cross-species co-expression for various types of interactions and thereby inform future studies on use-cases of the approach and the opportunities and pitfalls that can be expected in its application.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
立夏发布了新的文献求助30
15秒前
小二郎应助Gab_bb采纳,获得10
41秒前
飞云完成签到 ,获得积分10
50秒前
1分钟前
林克完成签到,获得积分10
1分钟前
自然亦凝完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
widesky777完成签到 ,获得积分0
1分钟前
今后应助单纯的爆米花采纳,获得10
1分钟前
lilihuashi完成签到 ,获得积分10
1分钟前
1分钟前
lilihuashi关注了科研通微信公众号
1分钟前
MM完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
我谈完成签到 ,获得积分10
2分钟前
2分钟前
Gab_bb发布了新的文献求助10
2分钟前
Gab_bb完成签到,获得积分10
2分钟前
阿尼完成签到 ,获得积分10
2分钟前
675完成签到,获得积分10
2分钟前
喜喜完成签到,获得积分10
2分钟前
张浩林完成签到,获得积分10
2分钟前
guoyufan完成签到,获得积分10
2分钟前
清水完成签到,获得积分10
2分钟前
王jyk完成签到,获得积分10
2分钟前
洋芋饭饭完成签到,获得积分10
2分钟前
阳光完成签到,获得积分10
2分钟前
ys1008完成签到,获得积分10
2分钟前
zwzw完成签到,获得积分10
2分钟前
呵呵哒完成签到,获得积分10
2分钟前
美满惜寒完成签到,获得积分10
2分钟前
真的OK完成签到,获得积分0
2分钟前
CGBIO完成签到,获得积分10
2分钟前
朝夕之晖完成签到,获得积分10
2分钟前
runtang完成签到,获得积分10
2分钟前
qq完成签到,获得积分10
2分钟前
yzz完成签到,获得积分10
2分钟前
cityhunter7777完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Terminologia Embryologica 500
Process Plant Design for Chemical Engineers 400
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5612005
求助须知:如何正确求助?哪些是违规求助? 4696171
关于积分的说明 14890481
捐赠科研通 4730805
什么是DOI,文献DOI怎么找? 2546105
邀请新用户注册赠送积分活动 1510419
关于科研通互助平台的介绍 1473299