Large Language Model-Based Natural Language Encoding Could Be All You Need for Drug Biomedical Association Prediction

化学 联想(心理学) 编码(内存) 自然语言 自然(考古学) 药品 自然语言处理 药物发现 计算生物学 人工智能 药理学 心理学 生物化学 计算机科学 生物 历史 医学 考古 心理治疗师
作者
Hanyu Zhang,Yuan Zhou,Zhichao Zhang,Huaicheng Sun,Ziqi Pan,Minjie Mou,Wei Zhang,Qing Ye,Tingjun Hou,Honglin Li,Chang-Yu Hsieh,Feng Zhu
出处
期刊:Analytical Chemistry [American Chemical Society]
被引量:5
标识
DOI:10.1021/acs.analchem.4c01793
摘要

Analyzing drug-related interactions in the field of biomedicine has been a critical aspect of drug discovery and development. While various artificial intelligence (AI)-based tools have been proposed to analyze drug biomedical associations (DBAs), their feature encoding did not adequately account for crucial biomedical functions and semantic concepts, thereby still hindering their progress. Since the advent of ChatGPT by OpenAI in 2022, large language models (LLMs) have demonstrated rapid growth and significant success across various applications. Herein, LEDAP was introduced, which uniquely leveraged LLM-based biotext feature encoding for predicting drug-disease associations, drug–drug interactions, and drug-side effect associations. Benefiting from the large-scale knowledgebase pre-training, LLMs had great potential in drug development analysis owing to their holistic understanding of natural language and human topics. LEDAP illustrated its notable competitiveness in comparison with other popular DBA analysis tools. Specifically, even in simple conjunction with classical machine learning methods, LLM-based feature representations consistently enabled satisfactory performance across diverse DBA tasks like binary classification, multiclass classification, and regression. Our findings underpinned the considerable potential of LLMs in drug development research, indicating a catalyst for further progress in related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小饭团子完成签到 ,获得积分10
刚刚
Hello应助郁郁采纳,获得10
1秒前
激昂的秀发完成签到,获得积分10
3秒前
hhh完成签到,获得积分10
4秒前
瓦罐汤完成签到 ,获得积分10
4秒前
陈爱佳发布了新的文献求助10
7秒前
完美梨愁完成签到 ,获得积分10
8秒前
Hang完成签到,获得积分10
8秒前
MISSIW完成签到,获得积分10
11秒前
orixero应助俊秀的丹翠采纳,获得20
13秒前
体贴坤坤完成签到 ,获得积分10
13秒前
量子星尘发布了新的文献求助10
14秒前
小熙完成签到 ,获得积分10
14秒前
李肆发布了新的文献求助10
14秒前
16秒前
香蕉觅云应助哈哈哈采纳,获得10
16秒前
HPP123完成签到 ,获得积分10
17秒前
滴滴滴完成签到 ,获得积分10
19秒前
coolru发布了新的文献求助10
19秒前
21秒前
Orange应助程希采纳,获得30
21秒前
22秒前
源源发布了新的文献求助20
24秒前
碧阳的尔风完成签到,获得积分10
24秒前
刻苦的白梅完成签到,获得积分20
25秒前
呆萌星星完成签到,获得积分10
26秒前
欣喜的以丹完成签到,获得积分10
27秒前
27秒前
小雨完成签到,获得积分10
28秒前
clove完成签到,获得积分10
29秒前
JamesPei应助科研通管家采纳,获得10
29秒前
彭于晏应助科研通管家采纳,获得10
29秒前
29秒前
完美世界应助科研通管家采纳,获得10
29秒前
29秒前
30秒前
31秒前
Yuanyuan完成签到,获得积分10
31秒前
JamesPei应助zz采纳,获得10
32秒前
心落失完成签到,获得积分10
32秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Structural Equation Modeling of Multiple Rater Data 700
 Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 590
全球膝关节骨性关节炎市场研究报告 555
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 540
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3890208
求助须知:如何正确求助?哪些是违规求助? 3432637
关于积分的说明 10780201
捐赠科研通 3157830
什么是DOI,文献DOI怎么找? 1743716
邀请新用户注册赠送积分活动 841909
科研通“疑难数据库(出版商)”最低求助积分说明 786181