Real-Time Collaborative Intrusion Detection System in UAV Networks Using Deep Learning

计算机科学 入侵检测系统 人工智能 深度学习 实时计算 计算机网络 分布式计算
作者
Hassan Jalil Hadi,Yue Cao,Sifan Li,Yulin Hu,Juan Wang,Shoufeng Wang
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (20): 33371-33391 被引量:8
标识
DOI:10.1109/jiot.2024.3426511
摘要

Unmanned aerial vehicles (UAVs) are being used extensively in various fields. UAVs provide various services to users, including monitoring, logistics, and sensing, because of their flexible deployment and dynamic reconfigurability. However, UAV networks have become more susceptible to malicious threats because of their multiconnectivity and openness. A great effort has been made to develop an effective intrusion detection system (IDS) based on machine-learning approaches for UAVs. Unfortunately, existing methods were unable to identify real time and zero-day attacks for UAV networks. This is due to that existing methods have still used obsolete data sets and past knowledge-based detection. Also, the shortcomings of standalone IDS render them unsuitable for defending UAV networks from potential security risks. Further, the lack of precise identification for compromised UAV nodes in UAV networks poses a critical security gap, risking the entire network's integrity with the compromise of a single node. Therefore, in this work, we propose an autonomous collaborative IDS (UAV-CIDS) with a feedforward convolutional neural network (FFCNN), which accurately identifies zero-day with high accuracy. The proposed solution takes into account encoded Wi-Fi traffic logs of three popular UAVs types: 1) DBPower UDI; 2) parrot Bebop; and 3) DJI spark. Evaluation results indicate that our FFCNN model has produced outstanding results based on the UAVIDS data set with 98.23% accuracy compared to existing models. After the detection of attacks, their mitigation is equally significant. In addition, we also design and implement real-time incident response handling against cyber-attacks on UAV Networks. The incident response handling will assist in minimizing the effects of a security breach, remediate vulnerabilities and systematically secure the entire UAV networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子车雁开完成签到,获得积分10
1秒前
malele完成签到,获得积分10
4秒前
5秒前
缓慢的香芦完成签到,获得积分10
5秒前
就叫十一吧完成签到,获得积分10
5秒前
负责之柔完成签到,获得积分10
7秒前
哈哈哈哈完成签到,获得积分10
8秒前
9秒前
生椰拿铁不加生椰完成签到 ,获得积分10
10秒前
认真的灵竹完成签到 ,获得积分10
11秒前
Zxx关注了科研通微信公众号
12秒前
12秒前
franca2005完成签到 ,获得积分10
12秒前
本末倒纸完成签到 ,获得积分10
14秒前
wbscz应助星辰采纳,获得10
14秒前
toxikon发布了新的文献求助10
15秒前
16秒前
18秒前
大模型应助剁辣椒蒸鱼头采纳,获得20
18秒前
小北完成签到 ,获得积分10
18秒前
19秒前
高挑的冰露完成签到 ,获得积分10
22秒前
ruochenzu发布了新的文献求助10
22秒前
老李完成签到,获得积分10
22秒前
23秒前
24秒前
tough_cookie完成签到 ,获得积分10
25秒前
彩钢房完成签到,获得积分10
26秒前
MeSs完成签到 ,获得积分10
27秒前
toxikon完成签到,获得积分10
28秒前
一点通完成签到,获得积分10
28秒前
Lei完成签到,获得积分10
29秒前
29秒前
29秒前
常若冰完成签到,获得积分10
29秒前
纯真的元风完成签到,获得积分10
30秒前
哇哈哈哈完成签到,获得积分10
30秒前
清秋1001完成签到 ,获得积分10
31秒前
qq完成签到,获得积分10
32秒前
荒野风发布了新的文献求助10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038619
求助须知:如何正确求助?哪些是违规求助? 3576294
关于积分的说明 11375058
捐赠科研通 3306084
什么是DOI,文献DOI怎么找? 1819374
邀请新用户注册赠送积分活动 892698
科研通“疑难数据库(出版商)”最低求助积分说明 815066