材料科学
微尺度化学
石墨烯
电解质
锂(药物)
阳极
离子
锂离子电池的纳米结构
接口(物质)
纳米技术
化学工程
光电子学
电极
复合材料
物理化学
有机化学
润湿
数学教育
内分泌学
工程类
医学
化学
数学
坐滴法
作者
Ke Ge,Zhenhong Wang,Jie Liu,Yongbiao Mu,Rui Wang,Xiaoqian Xu,Yichun Wang,Zhiyu Zou,Qing Zhang,Meisheng Han,Lin Zeng
标识
DOI:10.1002/adfm.202414384
摘要
Abstract Silicon (Si) anodes offer excellent lithium storage capacity for lithium‐ion batteries but face practical limitations due to significant volume expansion and low intrinsic electrical conductivity. These issues lead to side reactions that consume the electrolyte and impede ion‐electron transport, resulting in low areal loading (<2 mg cm⁻²) and restricted energy density. To address this, a scalable method is developed using spray drying of commercial graphite flakes (s‐Gr) and nanosilicon particles (n‐Si), followed by chemical vapor deposition to create microscale Si/C anodes (s‐Gr/n‐Si/VGs). Thin vertical graphene nanosheets (VGs) are grown on the surfaces and within the internal pores, forming a robust, micron‐sized Si/C spherical composite material. The VGs construct the conductive network, allowing the electrodes to operate at high areal loadings without pulverization and promoting LiF‐enriched solid electrolyte interphase for improved cycling stability. The s‐Gr/n‐Si/VGs maintain a capacity of 641.9 mAh g⁻¹ after 1000 cycles at 11.0 mg cm⁻², retaining 95.9% capacity. In pouch cells with NCM811 cathodes, the 5.0 Ah‐level cells achieved 80.0% capacity retention after 510 cycles at 1.0 C. This research provides a feasible pathway for manufacturing high‐performance, low‐cost, and scalable Si/C anodes suitable for high‐energy‐density lithium‐ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI