Challenges for augmenting intelligence in cardiac imaging

稀缺 医疗保健 启发式 质量(理念) 计算机科学 知识管理 风险分析(工程) 管理科学 人工智能 数据科学 机器学习 医学 工程类 政治学 哲学 认识论 法学 经济 微观经济学 操作系统
作者
Partho P. Sengupta,Damini Dey,Rhodri Davies,Nicolás Duchateau,Naveena Yanamala
出处
期刊:The Lancet Digital Health [Elsevier BV]
卷期号:6 (10): e739-e748 被引量:2
标识
DOI:10.1016/s2589-7500(24)00142-0
摘要

Artificial Intelligence (AI), through deep learning, has brought automation and predictive capabilities to cardiac imaging. However, despite considerable investment, tangible health-care cost reductions remain unproven. Although AI holds promise, there has been insufficient time for both methodological development and prospective clinical trials to establish its advantage over human interpretations in terms of its effect on patient outcomes. Challenges such as data scarcity, privacy issues, and ethical concerns impede optimal AI training. Furthermore, the absence of a unified model for the complex structure and function of the heart and evolving domain knowledge can introduce heuristic biases and influence underlying assumptions in model development. Integrating AI into diverse institutional picture archiving and communication systems and devices also presents a clinical hurdle. This hurdle is further compounded by an absence of high-quality labelled data, difficulty sharing data between institutions, and non-uniform and inadequate gold standards for external validations and comparisons of model performance in real-world settings. Nevertheless, there is a strong push in industry and academia for AI solutions in medical imaging. This Series paper reviews key studies and identifies challenges that require a pragmatic change in the approach for using AI for cardiac imaging, whereby AI is viewed as augmented intelligence to complement, not replace, human judgement. The focus should shift from isolated measurements to integrating non-linear and complex data towards identifying disease phenotypes-emphasising pattern recognition where AI excels. Algorithms should enhance imaging reports, enriching patients' understanding, communication between patients and clinicians, and shared decision making. The emergence of professional standards and guidelines is essential to address these developments and ensure the safe and effective integration of AI in cardiac imaging.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蚂蚁发布了新的文献求助10
2秒前
4秒前
Ava应助笑点低凡桃采纳,获得10
6秒前
8秒前
开放素完成签到 ,获得积分10
9秒前
cookie完成签到,获得积分10
9秒前
友好冷风发布了新的文献求助30
10秒前
EasyNan应助大机灵采纳,获得10
11秒前
琳雨完成签到,获得积分10
11秒前
渡星河发布了新的文献求助10
12秒前
majianzzu发布了新的文献求助30
13秒前
14秒前
sonder完成签到,获得积分10
14秒前
14秒前
ziyuexu发布了新的文献求助10
15秒前
何公主完成签到,获得积分10
15秒前
研友_VZG7GZ应助猪猪hero采纳,获得10
15秒前
善学以致用应助BASS采纳,获得10
20秒前
Kai完成签到,获得积分10
21秒前
ma完成签到,获得积分10
21秒前
酷波er应助ritanon采纳,获得10
22秒前
majianzzu完成签到,获得积分10
25秒前
orixero应助陈陈采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
Kirito应助科研通管家采纳,获得10
27秒前
27秒前
湖以应助科研通管家采纳,获得20
27秒前
27秒前
科研通AI5应助科研通管家采纳,获得30
28秒前
BINGBING应助科研通管家采纳,获得60
28秒前
深情祥完成签到,获得积分10
28秒前
与尔同销万古愁完成签到,获得积分10
28秒前
可耐的秋莲完成签到,获得积分10
29秒前
29秒前
渡星河完成签到,获得积分10
30秒前
31秒前
祁舒豪发布了新的文献求助20
34秒前
李健应助贪玩的万仇采纳,获得10
37秒前
38秒前
39秒前
高分求助中
Java: A Beginner's Guide, 10th Edition 5000
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
The Martian climate revisited: atmosphere and environment of a desert planet 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Plasmonics 400
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3848752
求助须知:如何正确求助?哪些是违规求助? 3391487
关于积分的说明 10568084
捐赠科研通 3112149
什么是DOI,文献DOI怎么找? 1715102
邀请新用户注册赠送积分活动 825561
科研通“疑难数据库(出版商)”最低求助积分说明 775663