Effects of the co-exposure of microplastic/nanoplastic and heavy metal on plants: Using CiteSpace, meta-analysis, and machine learning

重金属 环境化学 环境科学 化学 材料科学
作者
Yuyang Wu,Jun Zhu,Yue Sun,Siyuan Wang,Jun Wang,Xuanyu Zhang,Jiayi Song,Ruoxi Wang,Chun‐Yuan Chen,Jinhua Zou
出处
期刊:Ecotoxicology and Environmental Safety [Elsevier BV]
卷期号:286: 117237-117237 被引量:4
标识
DOI:10.1016/j.ecoenv.2024.117237
摘要

Micro/nanoplastics (MNPs) and heavy metals (HMs) coexist worldwide. Existing studies have reported different or even contradictory toxic effects of co-exposure to MNPs and HMs on plants, which may be related to various influencing factors. In this study, existing publications were searched and analyzed using CiteSpace, meta-analysis, and machine learning. CiteSpace analysis showed that this research field was still in the nascent stage, and hotspots in this field included accumulation, cadmium (Cd), growth, and combined toxicity. Meta-analysis revealed the differential association of seven influencing factors (MNP size, pollutant treatment duration, cultivation media, plant species, MNP type, HM concentration, and MNP concentration) and 8 physiological parameters receiving the most attention. Co-exposure of the two contaminants had stronger toxic effects than HM treatment alone, and phytotoxicity was generally enhanced with increasing concentrations and longer exposure durations, especially when using nanoparticles, hydroponic medium, dicotyledons producing stronger toxic effects than microplastics, soil-based medium, and monocotyledons. Dry and fresh weight analysis showed that co-exposure to MNPs and Cd resulted in significant phytotoxicity in all classifications. Concerning the MNP types, polyolefins partially attenuated plant toxicity, but both modified polystyrene (PS) and biodegradable polymers exacerbated joint phytotoxicity. Finally, machine learning was used to fit and predict plant HM concentrations, showing five classifications with an accuracy over 80 %, implying that the polynomial regression model could be used to predict HM content in plants under complex pollution conditions. Overall, this study identifies current knowledge gaps and provides guidance for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助温柔的惜儿采纳,获得10
刚刚
beichuanheqi完成签到,获得积分10
1秒前
Vicky完成签到 ,获得积分10
1秒前
2秒前
SYL应助JIAN采纳,获得10
2秒前
情怀应助yh采纳,获得10
3秒前
立夏发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
6秒前
肖婷婷关注了科研通微信公众号
6秒前
xiaominza发布了新的文献求助10
7秒前
Akim应助遇见0608采纳,获得10
8秒前
共享精神应助chenm0333042采纳,获得10
8秒前
丘比特应助rudjs采纳,获得10
8秒前
CipherSage应助潇洒的石头采纳,获得10
8秒前
nn发布了新的文献求助10
8秒前
刘泡泡发布了新的文献求助10
8秒前
科研通AI6应助淡淡天宇采纳,获得10
8秒前
9秒前
10秒前
111完成签到,获得积分20
10秒前
10秒前
orixero应助高兴曼寒采纳,获得10
10秒前
11秒前
AUK完成签到,获得积分10
11秒前
12秒前
12秒前
李健的小迷弟应助baixue采纳,获得10
12秒前
sleepingfish应助Avery采纳,获得20
12秒前
丘比特应助lily采纳,获得20
12秒前
科研通AI5应助111采纳,获得10
12秒前
14秒前
救驾来迟发布了新的文献求助10
14秒前
14秒前
15秒前
16秒前
AUK发布了新的文献求助10
16秒前
zzzzlll应助友好醉波采纳,获得10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Solid-Liquid Interfaces 600
Aircraft Engine Design, Third Edition 500
Neonatal and Pediatric ECMO Simulation Scenarios 500
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4747342
求助须知:如何正确求助?哪些是违规求助? 4094511
关于积分的说明 12668050
捐赠科研通 3806655
什么是DOI,文献DOI怎么找? 2101506
邀请新用户注册赠送积分活动 1126795
关于科研通互助平台的介绍 1003401