清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Data-driven modeling of unsteady flow based on deep operator network

操作员(生物学) 流量(数学) 计算机科学 流量网络 地质学 机械 数学 数学优化 物理 生物化学 化学 抑制因子 转录因子 基因
作者
Heming Bai,Zhicheng Wang,Xuesen Chu,Jian Deng,Xin Bian
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2404.06791
摘要

Time-dependent flow fields are typically generated by a computational fluid dynamics (CFD) method, which is an extremely time-consuming process. However, the latent relationship between the flow fields is governed by the Navier-Stokes equations and can be described by an operator. We therefore train a deep operator network, or simply DeepONet, to learn the temporal evolution between flow snapshots. Once properly trained, given a few consecutive snapshots as input, the network has a great potential to generate the next snapshot accurately and quickly. Using the output as a new input, the network iterates the process, generating a series of successive snapshots with little wall time. Specifically, we consider 2D flow around a circular cylinder at Reynolds number 1000, and prepare a set of high-fidelity data using a high-order spectral/hp element method as ground truth. Although the flow fields are periodic, there are many small-scale features in the wake flow that are difficult to generate accurately. Furthermore, any discrepancy between the prediction and the ground truth for the first snapshots can easily accumulate during the iterative process, which eventually amplifies the overall deviations. Therefore, we propose two alternative techniques to improve the training of DeepONet. The first one enhances the feature extraction of the network by harnessing the "multi-head non-local block". The second one refines the network parameters by leveraging the local smooth optimization technique. Both techniques prove to be highly effective in reducing the cumulative errors and our results outperform those of the dynamic mode decomposition method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyi完成签到,获得积分10
5秒前
科研通AI5应助OVO采纳,获得10
21秒前
vsvsgo完成签到,获得积分10
31秒前
dzll完成签到,获得积分10
42秒前
47秒前
cdercder应助科研通管家采纳,获得20
47秒前
1分钟前
zijingsy完成签到 ,获得积分10
1分钟前
ww完成签到,获得积分10
1分钟前
cc发布了新的文献求助10
1分钟前
今我来思完成签到 ,获得积分10
1分钟前
jlwang完成签到,获得积分10
1分钟前
湖以完成签到 ,获得积分10
1分钟前
wjx完成签到 ,获得积分10
1分钟前
Axs完成签到,获得积分10
2分钟前
王磊完成签到 ,获得积分10
2分钟前
Wen完成签到 ,获得积分10
2分钟前
星辰大海应助科研通管家采纳,获得10
2分钟前
思源应助科研通管家采纳,获得10
2分钟前
NexusExplorer应助科研通管家采纳,获得10
2分钟前
nini完成签到,获得积分10
3分钟前
星辰大海应助珏珏采纳,获得10
3分钟前
3分钟前
珏珏发布了新的文献求助10
3分钟前
陈好好完成签到 ,获得积分10
3分钟前
RLLLLLLL完成签到 ,获得积分10
4分钟前
cdercder应助科研通管家采纳,获得20
4分钟前
cdercder应助科研通管家采纳,获得20
4分钟前
dreamwalk完成签到 ,获得积分10
5分钟前
guangshuang完成签到 ,获得积分10
6分钟前
简奥斯汀完成签到 ,获得积分10
6分钟前
t铁核桃1985完成签到 ,获得积分10
6分钟前
波西米亚完成签到,获得积分10
7分钟前
眯眯眼的安雁完成签到 ,获得积分10
7分钟前
爱心完成签到 ,获得积分0
7分钟前
笨蛋美女完成签到 ,获得积分10
7分钟前
鲤鱼安青完成签到 ,获得积分10
8分钟前
baobeikk完成签到 ,获得积分10
8分钟前
微卫星不稳定完成签到 ,获得积分10
8分钟前
creep2020完成签到,获得积分10
8分钟前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3792541
求助须知:如何正确求助?哪些是违规求助? 3336762
关于积分的说明 10282100
捐赠科研通 3053544
什么是DOI,文献DOI怎么找? 1675652
邀请新用户注册赠送积分活动 803629
科研通“疑难数据库(出版商)”最低求助积分说明 761468