Spinning with exosomes: electrospun nanofibers for efficient targeting of stem cell-derived exosomes in tissue regeneration

微泡 纳米纤维 纳米技术 组织工程 再生(生物学) 静电纺丝 材料科学 再生医学 药物输送 间充质干细胞 干细胞 生物医学工程 细胞生物学 化学 生物 小RNA 医学 生物化学 基因 聚合物 复合材料
作者
Ritu Raj,Parinita Agrawal,Utkarsh Bhutani,Tuhin Bhowmick,Arun Chandru
出处
期刊:Biomedical Materials [IOP Publishing]
卷期号:19 (3): 032004-032004 被引量:2
标识
DOI:10.1088/1748-605x/ad3cab
摘要

Abstract Electrospinning technique converts polymeric solutions into nanoscale fibers using an electric field and can be used for various biomedical and clinical applications. Extracellular vesicles (EVs) are cell-derived small lipid vesicles enriched with biological cargo (proteins and nucleic acids) potential therapeutic applications. In this review, we discuss extending the scope of electrospinning by incorporating stem cell-derived EVs, particularly exosomes, into nanofibers for their effective delivery to target tissues. The parameters used during the electrospinning of biopolymers limit the stability and functional properties of cellular products. However, with careful consideration of process requirements, these can significantly improve stability, leading to longevity, effectiveness, and sustained and localized release. Electrospun nanofibers are known to encapsulate or surface-adsorb biological payloads such as therapeutic EVs, proteins, enzymes, and nucleic acids. Small EVs, specifically exosomes, have recently attracted the attention of researchers working on regeneration and tissue engineering because of their broad distribution and enormous potential as therapeutic agents. This review focuses on current developments in nanofibers for delivering therapeutic cargo molecules, with a special emphasis on exosomes. It also suggests prospective approaches that can be adapted to safely combine these two nanoscale systems and exponentially enhance their benefits in tissue engineering, medical device coating, and drug delivery applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助long采纳,获得10
刚刚
尹冰露发布了新的文献求助10
刚刚
Haley完成签到,获得积分10
1秒前
59完成签到,获得积分10
1秒前
田二亩完成签到,获得积分10
2秒前
HilbertVon完成签到 ,获得积分10
2秒前
科研木头人完成签到 ,获得积分10
3秒前
Yy完成签到,获得积分10
3秒前
阿雷完成签到,获得积分10
4秒前
4秒前
4秒前
moment完成签到 ,获得积分10
4秒前
5秒前
SYLH应助独弦清音采纳,获得10
5秒前
哈哈完成签到,获得积分10
5秒前
5秒前
大眼的平松完成签到,获得积分10
7秒前
初见应助你好呀采纳,获得20
7秒前
TG_FY完成签到,获得积分10
7秒前
goufufu完成签到,获得积分10
8秒前
33完成签到 ,获得积分10
8秒前
8秒前
泡芙完成签到,获得积分10
8秒前
good发布了新的文献求助10
9秒前
10秒前
10秒前
传奇3应助蜜CC采纳,获得10
12秒前
jjjjj发布了新的文献求助10
12秒前
完美元柏发布了新的文献求助30
12秒前
周周完成签到,获得积分10
12秒前
谜记完成签到,获得积分10
12秒前
13秒前
科研通AI5应助wangyiqing123采纳,获得10
13秒前
小巧的问旋完成签到,获得积分10
13秒前
summerwang完成签到,获得积分20
14秒前
Sunflower完成签到,获得积分10
14秒前
Maestro_S完成签到,获得积分0
14秒前
一一完成签到 ,获得积分10
14秒前
wanci应助石文采纳,获得10
15秒前
穆晴朗完成签到,获得积分10
15秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders 800
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
建筑材料检测与应用 370
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3830693
求助须知:如何正确求助?哪些是违规求助? 3373035
关于积分的说明 10476908
捐赠科研通 3093097
什么是DOI,文献DOI怎么找? 1702333
邀请新用户注册赠送积分活动 818937
科研通“疑难数据库(出版商)”最低求助积分说明 771154