Deep learning assists detection of esophageal cancer and precursor lesions in a prospective, randomized controlled study

食管癌 无症状的 医学 随机化 内窥镜检查 随机对照试验 癌症 不利影响 临床终点 人口 胃肠病学 临床试验 外科 内科学 环境卫生
作者
Shao-wei Li,Lihui Zhang,Yue Cai,Xian-Bin Zhou,Xin-yu Fu,Yaqi Song,Shiwen Xu,Shen-ping Tang,Renquan Luo,Qin Huang,Lingling Yan,Sai-qin He,Yu Zhang,Jun Wang,Shu-qiong Ge,Binbin Gu,Jin-Bang Peng,Yi Wang,Lina Fang,Weidan Wu
出处
期刊:Science Translational Medicine [American Association for the Advancement of Science]
卷期号:16 (743) 被引量:14
标识
DOI:10.1126/scitranslmed.adk5395
摘要

Endoscopy is the primary modality for detecting asymptomatic esophageal squamous cell carcinoma (ESCC) and precancerous lesions. Improving detection rate remains challenging. We developed a system based on deep convolutional neural networks (CNNs) for detecting esophageal cancer and precancerous lesions [high-risk esophageal lesions (HrELs)] and validated its efficacy in improving HrEL detection rate in clinical practice (trial registration ChiCTR2100044126 at www.chictr.org.cn ). Between April 2021 and March 2022, 3117 patients ≥50 years old were consecutively recruited from Taizhou Hospital, Zhejiang Province, and randomly assigned 1:1 to an experimental group (CNN-assisted endoscopy) or a control group (unassisted endoscopy) based on block randomization. The primary endpoint was the HrEL detection rate. In the intention-to-treat population, the HrEL detection rate [28 of 1556 (1.8%)] was significantly higher in the experimental group than in the control group [14 of 1561 (0.9%), P = 0.029], and the experimental group detection rate was twice that of the control group. Similar findings were observed between the experimental and control groups [28 of 1524 (1.9%) versus 13 of 1534 (0.9%), respectively; P = 0.021]. The system’s sensitivity, specificity, and accuracy for detecting HrELs were 89.7, 98.5, and 98.2%, respectively. No adverse events occurred. The proposed system thus improved HrEL detection rate during endoscopy and was safe. Deep learning assistance may enhance early diagnosis and treatment of esophageal cancer and may become a useful tool for esophageal cancer screening.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
嘻嘻完成签到,获得积分10
1秒前
嗯哼发布了新的文献求助10
2秒前
3秒前
Moonflower完成签到,获得积分10
3秒前
4秒前
5秒前
思源应助独特的尔风采纳,获得50
6秒前
qw完成签到,获得积分10
9秒前
SASA完成签到,获得积分10
11秒前
斯文败类应助嗯哼采纳,获得10
12秒前
小吉完成签到,获得积分10
12秒前
难过的丹烟完成签到,获得积分10
12秒前
hhan完成签到,获得积分10
13秒前
北海未暖完成签到,获得积分10
14秒前
Spring完成签到,获得积分10
15秒前
16秒前
17秒前
昏睡的巨人完成签到,获得积分20
18秒前
千空完成签到,获得积分10
20秒前
天真的idiot完成签到 ,获得积分10
20秒前
一苇发布了新的文献求助10
21秒前
21秒前
文艺思卉完成签到,获得积分10
22秒前
26秒前
27秒前
科研通AI2S应助一苇采纳,获得10
29秒前
CodeCraft应助一苇采纳,获得10
29秒前
研究生完成签到,获得积分10
29秒前
重要小懒虫完成签到,获得积分10
30秒前
wanci应助天真的idiot采纳,获得10
30秒前
31秒前
31秒前
贪玩谷芹发布了新的文献求助30
31秒前
32秒前
32秒前
yh完成签到,获得积分10
32秒前
如初应助研究生采纳,获得10
34秒前
SteveRogers完成签到,获得积分10
36秒前
36秒前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
A First Course in Bayesian Statistical Methods 400
American Historical Review - Volume 130, Issue 2, June 2025 (Full Issue) 400
Canon of Insolation and the Ice-age Problem 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3911444
求助须知:如何正确求助?哪些是违规求助? 3457080
关于积分的说明 10892941
捐赠科研通 3183395
什么是DOI,文献DOI怎么找? 1759631
邀请新用户注册赠送积分活动 851039
科研通“疑难数据库(出版商)”最低求助积分说明 792399