Integrating AIGC into product design ideation teaching: An empirical study on self-efficacy and learning outcomes

自我效能感 构思 心理学 实证研究 产品(数学) 数学教育 心理治疗师 数学 认知科学 统计 几何学
作者
Kuo-Liang Huang,Yichen Liu,Mingqing Dong,Chia-Chen Lu
出处
期刊:Learning and Instruction [Elsevier]
卷期号:92: 101929-101929 被引量:51
标识
DOI:10.1016/j.learninstruc.2024.101929
摘要

The emergence of artificial intelligence-generated content (AIGC) in the realm of education, notably in product design, signifies a watershed moment, heralding significant enhancements over conventional pedagogies by potentially catalyzing unparalleled innovation. This investigation assesses the ramifications of assimilating AIGC into product design instruction, focusing on its advantages, constraints, and consequent influence on students' design cognition across a spectrum of proficiency levels. The study encompassed 119 scholars with a focus on product or industrial design, delineated into three distinct echelons of proficiency. Utilizing Technology-mediated Learning Theory, an empirical field study was initiated to explore AIGC's impact on self-efficacy, ideation volume, innovation, diversity, and the aggregate quality of outcomes, taking into account the divergence in pedagogical strategies and student competency tiers. AIGC notably augmented students' self-efficacy, ideation, novelty, and variety, albeit with a potential diminution in ideational quality. Disparities in self-efficacy, volume of ideas, and their caliber were discernibly evident across varying tiers of competency. AIGC markedly fosters innovation within product design pedagogy, demonstrating its ascendancy over traditional instructional methods in catalyzing scholastic innovation. However, orthodox teaching methodologies retain their critical role in the cultivation of problem-solving acumen. Personalized support, particularly for those demonstrating lower self-efficacy, is paramount in amplifying their creative ideation through bespoke pedagogical strategies, thus maximizing the utility of AIGC integration.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
homie发布了新的文献求助10
1秒前
KYY发布了新的文献求助10
1秒前
行走人生完成签到,获得积分10
1秒前
1秒前
1秒前
liian7完成签到,获得积分10
2秒前
doremi发布了新的文献求助10
2秒前
2秒前
阳光完成签到,获得积分10
3秒前
夜月残阳发布了新的文献求助10
3秒前
呐呐呐呐呐呐完成签到,获得积分10
3秒前
汤姆发布了新的文献求助10
3秒前
lixiaofan发布了新的文献求助10
4秒前
4秒前
4秒前
无头的小米完成签到,获得积分10
4秒前
上官若男应助ylp采纳,获得10
4秒前
孤独千愁完成签到,获得积分10
4秒前
毛盛平完成签到,获得积分10
5秒前
5秒前
LY发布了新的文献求助10
5秒前
5秒前
6秒前
迷路面包完成签到,获得积分10
6秒前
fanqiaqia完成签到,获得积分10
6秒前
卷发麦麦完成签到,获得积分20
6秒前
6秒前
Maestro_S应助缓慢弼采纳,获得10
7秒前
7秒前
7秒前
Rubywoo发布了新的文献求助10
7秒前
无极微光应助wch采纳,获得20
8秒前
qingzheng1019发布了新的文献求助10
8秒前
8秒前
8秒前
浮游应助精明冷雪采纳,获得10
8秒前
8秒前
KXQ发布了新的文献求助10
9秒前
思源应助11采纳,获得10
9秒前
yf990703发布了新的文献求助30
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5512592
求助须知:如何正确求助?哪些是违规求助? 4607038
关于积分的说明 14502582
捐赠科研通 4542444
什么是DOI,文献DOI怎么找? 2489039
邀请新用户注册赠送积分活动 1471072
关于科研通互助平台的介绍 1443218