侧面
材料科学
谐振器
厄米矩阵
灵敏度(控制系统)
戒指(化学)
分裂环谐振器
光学
光电子学
电子工程
物理
量子力学
工程类
有机化学
化学
作者
Zhenci Sun,Xiaoguang Zhao,Lingyun Zhang,Chao Liang,Bingbai Li,Wenshuai Lu,Wenqiang Zhang,Rui You,Jiahao Zhao,Zheng You
标识
DOI:10.1002/adom.202302420
摘要
Abstract Directional radiofrequency (RF) sensing, also known as radio direction finding, is essential in various applications that involve localizing RF sources. However, existing RF sensing technologies face challenges due to their large antenna sizes and complex RF signal processing circuits, which hinder the realization of miniaturized subwavelength direction sensors. In this article, a non‐Hermitian broadside coupled split ring resonators (BC‐SRRs) are presented, which can identify the direction of an incident RF signal with angles ranging from 0° to 180°. The non‐Hermitian Hamiltonian of the system, which can be interpreted by the temporal coupled mode theory, gives rise to asymmetric resonant modes of the BC‐SRRs. The asymmetry allows the direct measurement of RF wave incident angle by probing the resonant strength of the two BC‐SRRs. For the proof of concept, a one‐stage Dickson voltage multiplier is employed to rectify the RF signals and demonstrate angle sensing ability by relating the rectified voltage to the incident angle. The results showcase the potential of the proposed technique using non‐Hermitian BC‐SRRs as a pathway toward subwavelength antenna‐based radio direction finding.
科研通智能强力驱动
Strongly Powered by AbleSci AI