钝化
超分子化学
材料科学
晶界
能量转换效率
共价键
钙钛矿(结构)
碘化物
钙钛矿太阳能电池
氢键
纳米技术
化学物理
工程类
化学工程
光电子学
无机化学
结晶学
化学
复合材料
晶体结构
图层(电子)
有机化学
分子
微观结构
作者
Hochan Song,Hak-Beom Kim,Seong Chan Cho,Jeongjae Lee,Jonghee Yang,Woo Hyeon Jeong,Ji Yeon Won,Hong In Jeong,Jiwoo Yeop,Jin Young Kim,Benjamin J. Lawrie,Mahshid Ahmadi,Bo Ram Lee,Minjin Kim,Seung Ju Choi,Dong Suk Kim,Minjae Lee,Sang Uck Lee,Yimhyun Jo,Hyosung Choi
出处
期刊:Joule
[Elsevier]
日期:2024-06-19
卷期号:8 (8): 2283-2303
被引量:13
标识
DOI:10.1016/j.joule.2024.05.019
摘要
In this work, we reveal the role of non-covalent interactions, which are known to play important roles in supramolecular phenomena, in achieving efficient perovskite surface and grain boundary passivation. By using a series of pseudohalides, we find that trifluoroacetate (TFA−) provides the strongest binding to iodide vacancies by means of non-covalent hydrogen bonding and dispersion interactions. By exploiting additional non-covalent dispersion and hydrophobic interactions in aromatic 3,3-diphenylpropylammonium (DPA+), we present a dual-ion passivation strategy that not only minimizes the non-radiative recombination center and local chemical inhomogeneities but also induces preferentially oriented growth of α-FAPbI3 lattice. This leads to an outstanding power conversion efficiency (PCE) of 25.63% with an exceptional open-circuit voltage of 1.191 V in a perovskite solar cell with a small area, while perovskite solar mini modules with aperture areas of 25 and 64 cm2 achieved PCE of 22.47% (quasi-steady-state [QSS]-certified 20.50%) and 20.88%, respectively, with outstanding stability under high-humidity conditions.
科研通智能强力驱动
Strongly Powered by AbleSci AI