重整化群
泛函重整化群
格子(音乐)
杠杆(统计)
物理
偏微分方程
人工神经网络
统计物理学
应用数学
数学物理
理论物理学
计算机科学
数学
量子力学
人工智能
声学
出处
期刊:Physical review
[American Physical Society]
日期:2024-06-14
卷期号:109 (21)
被引量:1
标识
DOI:10.1103/physrevb.109.214205
摘要
Addressing high-dimensional partial differential equations to derive effective actions within the functional renormalization group is formidable, especially when considering various field configurations, including inhomogeneous states, even on lattices. We leverage physics-informed neural networks (PINNs) as a state-of-the-art machine-learning method for solving high-dimensional partial differential equations to overcome this challenge. In a zero-dimensional $\mathrm{O}(N)$ model, we numerically demonstrate the construction of an effective action on an $N$-dimensional configuration space, extending up to $N=100$. Our results underscore the effectiveness of PINN approximation, even in scenarios lacking small parameters such as a small coupling.
科研通智能强力驱动
Strongly Powered by AbleSci AI