FedDiff: Diffusion Model Driven Federated Learning for Multi-Modal and Multi-Clients

计算机科学 情态动词 扩散 人工智能 材料科学 物理 高分子化学 热力学
作者
Daixun Li,Weiying Xie,Zixuan Wang,Yibing Lü,Yunsong Li,Leyuan Fang
出处
期刊:IEEE Transactions on Circuits and Systems for Video Technology [Institute of Electrical and Electronics Engineers]
卷期号:34 (10): 10353-10367 被引量:5
标识
DOI:10.1109/tcsvt.2024.3407131
摘要

With the rapid development of imaging sensor technology in the field of remote sensing, multi-modal remote sensing data fusion has emerged as a crucial research direction for land cover classification tasks. While diffusion models have made great progress in generative models and image classification tasks, existing models primarily focus on single-modality and single-client control, that is, the diffusion process is driven by a single modal in a single computing node. To facilitate the secure fusion of heterogeneous data from clients, it is necessary to enable distributed multi-modal control, such as merging the hyperspectral data of organization A and the LiDAR data of organization B privately on each base station client. In this study, we propose a multi-modal collaborative diffusion federated learning framework called FedDiff. Our framework establishes a dual-branch diffusion model feature extraction setup, where the two modal data are inputted into separate branches of the encoder. Our key insight is that diffusion models driven by different modalities are inherently complementary in terms of potential denoising steps on which bilateral connections can be built. Considering the challenge of private and efficient communication between multiple clients, we embed the diffusion model into the federated learning communication structure, and introduce a lightweight communication module. Qualitative and quantitative experiments validate the superiority of our framework in terms of image quality and conditional consistency. To the best of our knowledge, this is the first instance of deploying a diffusion model into a federated learning framework, achieving optimal both privacy protection and performance for heterogeneous data. Our FedDiff surpasses existing methods in terms of performance on three multi-modal datasets, achieving a classification average accuracy of 96.77% while reducing the communication cost.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yy完成签到,获得积分10
刚刚
爆米花应助咖喱酱采纳,获得10
1秒前
科研通AI5应助世界和平采纳,获得30
2秒前
兰静发布了新的文献求助10
2秒前
3秒前
今后应助欣喜眼神采纳,获得10
3秒前
4秒前
orixero应助梅雨季来信采纳,获得10
4秒前
5秒前
Magali发布了新的文献求助10
5秒前
6秒前
7秒前
可靠冰凡应助南风采纳,获得10
7秒前
怡轻肝完成签到,获得积分10
8秒前
cj发布了新的文献求助10
9秒前
zmmm发布了新的文献求助20
9秒前
9秒前
9秒前
咖喱酱完成签到,获得积分10
11秒前
wsxx200024发布了新的文献求助10
11秒前
ahyiziping发布了新的文献求助10
12秒前
大白发布了新的文献求助10
13秒前
咖喱酱发布了新的文献求助10
14秒前
16秒前
16秒前
17秒前
18秒前
19秒前
无花果应助Ree采纳,获得10
19秒前
zzz完成签到,获得积分10
20秒前
22秒前
Steven完成签到,获得积分10
22秒前
Akim应助张栋拐采纳,获得10
22秒前
22秒前
crazydick发布了新的文献求助10
22秒前
ylq发布了新的文献求助10
23秒前
23秒前
24秒前
26秒前
Steven发布了新的文献求助10
26秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3814887
求助须知:如何正确求助?哪些是违规求助? 3358983
关于积分的说明 10399091
捐赠科研通 3076489
什么是DOI,文献DOI怎么找? 1689843
邀请新用户注册赠送积分活动 813339
科研通“疑难数据库(出版商)”最低求助积分说明 767608