GPR-Former: Detection and Parametric Reconstruction of Hyperbolas in GPR B-Scan Images With Transformers

探地雷达 遥感 参数统计 地质学 双曲线 计算机科学 人工智能 雷达 数学 几何学 电信 统计
作者
Ang Jin,Chi Chen,Bisheng Yang,Qin Zou,Zhiye Wang,Zhengfei Yan,Shaolong Wu,Jian Zhou
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-13
标识
DOI:10.1109/tgrs.2024.3406154
摘要

Ground Penetrating Radar (GPR) enables the non-invasive detection of various subsurface objects such as pipes, stones, etc. The location and size of the object in the medium could be obtained by fitting the generated hyperbolic signatures within the GPR B-scan and analyzing its parameters. In this paper, GPR-Former is proposed for automatic target detection and hyperbola fitting on GPR B-scan images. We have designed a transformer-based neural network to extract features to directly regress the parameters of hyperbolic signatures in the GPR B-scan data to detect targets beneath the ground automatically. A symmetry-constrained analytical solution for the hyperbolic parameters is proposed to refine the parameters derived from the transformer network, serving the extraction and analysis of buried objects in underground opaque spaces. Experiments are conducted on three datasets for the qualitative and quantitative validation of the GPR-Former, including ground-penetrating radar detection of submarine pipelines and land pipelines. Results show that the proposed method is able to automatically and efficiently extract hyperbolas from GPR B-scan images. True hyperbola-point precision (TP_Pre) and true hyperbola-point recall (TP_Rec) metrics are introduced to evaluate performances in parametric hyperbola extraction and fitting. The results show that the TP_Pre and TP_Rec of the proposed method reach 0.867, 0.402, 0.744 and 0.762, 0.736, 0.723, with an improvement of 6%, 22%, 4% compared with the state-of-the-art methods (C3 algorithm and migration learning-based method proposed by Yang), respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李健的小迷弟应助Pomelo采纳,获得10
1秒前
827584450发布了新的文献求助20
2秒前
能干土豆完成签到,获得积分10
2秒前
cdercder应助pierresun采纳,获得10
3秒前
3秒前
橙子完成签到,获得积分10
3秒前
明理汉堡完成签到 ,获得积分10
3秒前
tanmeng77完成签到,获得积分10
4秒前
4秒前
无辜听寒完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
5秒前
5秒前
5秒前
xiongyh10完成签到,获得积分10
6秒前
深情安青应助阿土猪采纳,获得10
6秒前
JamesPei应助pierre_gasly采纳,获得10
7秒前
7秒前
背后海亦完成签到,获得积分10
7秒前
8秒前
一名地理渣渣完成签到,获得积分10
8秒前
文尧雨发布了新的文献求助10
9秒前
忧虑的代容完成签到,获得积分10
9秒前
依依发布了新的文献求助10
10秒前
高源发布了新的文献求助30
10秒前
lzy发布了新的文献求助10
10秒前
淡定发布了新的文献求助10
11秒前
ddd发布了新的文献求助10
11秒前
11秒前
还行发布了新的文献求助10
12秒前
12秒前
12秒前
12秒前
顾矜应助淡然惜萱采纳,获得10
12秒前
12秒前
未改发布了新的文献求助10
14秒前
科研通AI5应助灰灰采纳,获得10
14秒前
ltttyy完成签到,获得积分10
14秒前
高分求助中
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Hardness Tests and Hardness Number Conversions 300
Knowledge management in the fashion industry 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3816738
求助须知:如何正确求助?哪些是违规求助? 3360137
关于积分的说明 10406832
捐赠科研通 3078164
什么是DOI,文献DOI怎么找? 1690598
邀请新用户注册赠送积分活动 813910
科研通“疑难数据库(出版商)”最低求助积分说明 767889