Global Meets Local: Dual Activation Hashing Network for Large-Scale Fine-Grained Image Retrieval

计算机科学 图像检索 散列函数 比例(比率) 对偶(语法数字) 图像(数学) 人工智能 计算机安全 艺术 物理 文学类 量子力学
作者
Xin Jiang,Hao Tang,Zechao Li
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:36 (11): 6266-6279 被引量:3
标识
DOI:10.1109/tkde.2024.3393512
摘要

In the Internet era, the exponential growth of fine-grained image databases poses a considerable challenge for efficient information retrieval. Hashing-based approaches gained traction for their computational and storage efficiency, yet fine-grained hashing retrieval presents unique challenges due to small inter-class and large intra-class variations inherent to fine-grained entities. Thus, traditional hashing algorithms falter in discerning these subtle, yet critical, visual differences and fail to generate compact yet semantically rich hash codes. To address this, we introduce a Dual Activation Hashing Network ( DAHNet ) designed to convert high-dimensional image data into optimized binary codes via an innovative feature activation paradigm. The architecture consists of dual branches specifically tailored for global and local semantic activation, thereby establishing direct correspondences between hash codes and distinguishable object parts through a hierarchical activation pipeline. Specifically, our spatial-oriented semantic activation module modulates dominant visual regions while amplifying the activations of subtle yet semantically rich areas in a controlled manner. Building on these activated visual representations, the proposed inter-region semantic enrichment module further enriches them by unearthing semantically complementary cues. Concurrently, DAHNet integrates a channel-oriented semantic activation module that exploits channel-specific correlations to distill contextual cues from spatially-activated visual features, thereby reinforcing robust learning to hash. To maintain the similarity of the original entities, we amalgamate final hash codes from both activation branches, capturing both local textural details and global structural information. Comprehensive evaluations on five fine-grained image retrieval benchmarks demonstrate DAHNet 's superior performance over existing state-of-the-art hashing solutions, especially on 12-bit, improving performance by 4%-15% compared to the current best results on the five benchmarks. Moreover, generalization studies validate the efficacy of our dual-activation framework in the domain of content-based fine-grained image retrieval. The code is publicly available at: https://github.com/WhiteJiang/DAHNet .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助杨123采纳,获得10
1秒前
研友_VZG7GZ应助悦耳的之卉采纳,获得10
3秒前
6秒前
6秒前
strive完成签到,获得积分20
6秒前
温暖芷文完成签到,获得积分10
9秒前
訫藍发布了新的文献求助10
10秒前
10秒前
DJ发布了新的文献求助10
12秒前
13秒前
16秒前
Coolkid2001完成签到,获得积分10
17秒前
18秒前
18秒前
畅快老虎发布了新的文献求助10
19秒前
21秒前
N型半导体发布了新的文献求助10
22秒前
学生物的橘子应助雨田采纳,获得10
24秒前
SciGPT应助DJ采纳,获得10
24秒前
24秒前
26秒前
香蕉觅云应助abletoo采纳,获得10
26秒前
抹缇卡完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
28秒前
29秒前
Hello应助研友_8QyXr8采纳,获得10
30秒前
31秒前
LXD完成签到,获得积分10
31秒前
猪猪hero发布了新的文献求助10
33秒前
研友_qZ6V1Z完成签到,获得积分10
34秒前
dd完成签到 ,获得积分10
35秒前
诚心凝旋发布了新的文献求助10
35秒前
ED应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得100
36秒前
wanci应助科研通管家采纳,获得10
36秒前
17完成签到,获得积分10
36秒前
桐桐应助科研通管家采纳,获得10
36秒前
36秒前
36秒前
36秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Composite Predicates in English 300
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3982338
求助须知:如何正确求助?哪些是违规求助? 3525951
关于积分的说明 11229459
捐赠科研通 3263804
什么是DOI,文献DOI怎么找? 1801680
邀请新用户注册赠送积分活动 879972
科研通“疑难数据库(出版商)”最低求助积分说明 807750