双线性插值
Korteweg–de Vries方程
符号计算
松驰对
非线性系统
非线性薛定谔方程
孤子
应用数学
插值(计算机图形学)
双线性形式
数学
递归(计算机科学)
数学分析
物理
薛定谔方程
可积系统
经典力学
量子力学
算法
统计
运动(物理)
作者
Sachin Kumar,Brij Mohan
出处
期刊:Physica Scripta
[IOP Publishing]
日期:2022-11-15
卷期号:97 (12): 125214-125214
被引量:43
标识
DOI:10.1088/1402-4896/aca2fa
摘要
Abstract In present work, we formulate a new generalized nonlinear KdV-type equation of fifth-order using the recursion operator. This equation generalizes the Sawada-Kotera equation and the Lax equation that study the vibrations in mechanical engineering, nonlinear waves in shallow water, and other sciences. To determine the integrability, we use Painlevé analysis and construct solutions for multiple solitons by employing the Hirota bilinear technique to the established equation. It produces a bilinear form for the driven equation and utilizes the Lagrange interpolation to create a dependent variable transformation. We construct the solutions for multiple solitons and show the graphics for these built solutions. The mathematical software program Mathematica employs symbolic computation to obtain the multiple solitons and various dynamical behavior of the solutions for newly generated equation The Sawada-Kotera equation and Lax equation have various applications in mechanical engineering, plasma physics, nonlinear water waves, soliton theory, mathematical physics, and other nonlinear fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI