Multi-target meridians classification based on the topological structure of anti-cancer phytochemicals using deep learning

人工智能 中医药 传统医学 医学 卷积神经网络 计算机科学 病理 替代医学
作者
Sheng Zhang,Xianwei Zhang,Jiayin Du,Wei Wang,Xitian Pi
出处
期刊:Journal of Ethnopharmacology [Elsevier BV]
卷期号:319: 117244-117244 被引量:6
标识
DOI:10.1016/j.jep.2023.117244
摘要

Traditional Chinese medicine (TCM) meridian is the key theoretical guidance of prescription against tumor in clinical practice. However, there is no scientific and systematic verification of therapeutic action of herbs under meridians context. Several studies have determined the Chinese herbal medicine (CHM) phytochemicals for intrinsic attribute or meridians classification based on artificial intelligence (AI) tools. However, it is challenging to represent the complex molecular structures with large heterogeneity through the current technologies. In addition, the multiple correspondence between herbs and meridians has not been paid much attention. We aim to develop an AI framework to classify multi-target meridians through the topological structure of phytochemicals. A total of 354 anti-cancer herbs, their corresponding TCM meridians and 5471 ingredient compounds were collected from public databases of CancerHSP, ETCM, and Hit 2.0. The statistical analysis of herbal and compound datasets, clustering analysis of the associated cancers, and correlational analysis of meridian tropism were preliminary conducted. Then a deep learning (DL) hybrid model named GRMC consisting of graph convolutional network (GCN) and recurrent neural network (RNN) was employed to generate the meridian multi-label sequences based on molecular graph. The curing herbs against tumors have tight relationships to lung, liver, stomach, and spleen meridians. These herbs behave different properties in curing certain cancer. Certain cancer types have co-occurrence such as ovarian, bladder and cervical cancer. Compounds have multitarget meridians with characteristics of higher-order correlations. Compared with the other state-of-the-art algorithms on the datasets and previous methods dealing with conventional fixed fingerprints of herbal compounds, the proposed GRMC has superior overall performance on testing dataset with the one error of 0.183, hamming loss of 0.112, mean averaged accuracy (MAA) of 0.855, mean averaged precision (MAP) of 0.891, mean averaged recall (MAR) of 0.812, and mean averaged F1 score (MAF) of 0.849. The proposed method can predict multi-targeted meridians through neural graph features in herbal compounds and outperforms several comparison methods. It could provide a basis for understanding the molecular scientific evidence of TCM meridians.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭a完成签到,获得积分10
刚刚
LLL完成签到,获得积分10
刚刚
leo完成签到,获得积分10
1秒前
机灵含巧发布了新的文献求助20
1秒前
风趣的小甜瓜完成签到,获得积分10
2秒前
独特的谷雪完成签到,获得积分10
2秒前
licheng完成签到,获得积分10
2秒前
希望天下0贩的0应助728采纳,获得10
2秒前
3秒前
3秒前
SciGPT应助胡大嘴先生采纳,获得10
4秒前
hustscholar完成签到,获得积分10
6秒前
漂泊1991完成签到,获得积分10
6秒前
白桃乌龙完成签到,获得积分10
7秒前
bzc229完成签到,获得积分10
7秒前
秀丽的依云完成签到 ,获得积分10
7秒前
CipherSage应助LLL采纳,获得10
8秒前
9秒前
芝麻完成签到,获得积分10
9秒前
周先森完成签到,获得积分10
9秒前
谢佩奇完成签到,获得积分10
9秒前
小茗同学完成签到,获得积分10
9秒前
llllzzh完成签到 ,获得积分10
9秒前
尘弦完成签到 ,获得积分10
10秒前
蓝调爱科研应助CX采纳,获得10
12秒前
深情安青应助CX采纳,获得10
12秒前
zz完成签到,获得积分10
13秒前
小白科研完成签到,获得积分10
14秒前
哈雷彗星完成签到,获得积分10
14秒前
doudou完成签到,获得积分10
15秒前
黑风小妖完成签到,获得积分10
15秒前
15秒前
机灵石头完成签到,获得积分10
15秒前
暖阳完成签到,获得积分10
15秒前
无语的怜梦完成签到,获得积分10
16秒前
燕晓啸完成签到 ,获得积分0
16秒前
田様应助阿都采纳,获得10
16秒前
思源应助彩色采纳,获得10
16秒前
旧城旧巷等旧人完成签到 ,获得积分10
17秒前
xiaowang完成签到,获得积分10
18秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815945
求助须知:如何正确求助?哪些是违规求助? 3359450
关于积分的说明 10402728
捐赠科研通 3077293
什么是DOI,文献DOI怎么找? 1690285
邀请新用户注册赠送积分活动 813693
科研通“疑难数据库(出版商)”最低求助积分说明 767743