Hydrological regimes explain the seasonal predictability of streamflow extremes

可预测性 水流 气候学 环境科学 强迫(数学) 预测技巧 气象学 流域 地理 统计 地质学 数学 地图学
作者
Yiheng Du,Ilaria Clemenzi,Ilias Pechlivanidis
出处
期刊:Environmental Research Letters [IOP Publishing]
卷期号:18 (9): 094060-094060 被引量:9
标识
DOI:10.1088/1748-9326/acf678
摘要

Abstract Advances in hydrological modeling and numerical weather forecasting have allowed hydro-climate services to provide accurate impact simulations and skillful forecasts that can drive decisions at the local scale. To enhance early warnings and long-term risk reduction actions, it is imperative to better understand the hydrological extremes and explore the drivers for their predictability. Here, we investigate the seasonal forecast skill of streamflow extremes over the pan-European domain, and further attribute the discrepancy in their predictability to the local river system memory as described by the hydrological regimes. Streamflow forecasts at about 35 400 basins, generated from the E-HYPE hydrological model driven with bias-adjusted ECMWF SEAS5 meteorological forcing input, are explored. Overall the results show adequate predictability for both hydrological extremes over Europe, despite the spatial variability in skill. The skill of high streamflow extreme deteriorates faster as a function of lead time than that of low extreme, with a positive skill persisting up to 12 and 20 weeks ahead for high and low extremes, respectively. A strong link between the predictability of extremes and the underlying local hydrological regime is identified through comparative analysis, indicating that systems of analogous river memory, e.g. fast or slow response to rainfall, can similarly predict the high and low streamflow extremes. The results improve our understanding of the geographical areas and periods, where the seasonal forecasts can timely provide information on very high and low streamflow conditions, including the drivers controlling their predictability. This consequently benefits regional and national organizations to embrace seasonal prediction systems and improve the capacity to act in order to reduce disaster risk and support climate adaptation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wanci应助校长采纳,获得10
1秒前
ding应助土壤ARGs采纳,获得30
1秒前
ttx发布了新的文献求助10
2秒前
ZhouYW应助summy采纳,获得10
2秒前
领导范儿应助summy采纳,获得10
2秒前
2秒前
llg发布了新的文献求助10
2秒前
快乐的乐巧完成签到,获得积分10
4秒前
4秒前
hullu发布了新的文献求助10
4秒前
BruceKKKK发布了新的文献求助10
5秒前
无奈完成签到,获得积分10
5秒前
fuhao完成签到,获得积分10
5秒前
辻渃完成签到,获得积分10
5秒前
北风完成签到 ,获得积分10
5秒前
Ava应助橘子海采纳,获得10
6秒前
yss完成签到,获得积分10
6秒前
7秒前
bkagyin应助yeyongchang_hit采纳,获得10
7秒前
7秒前
小浣熊完成签到 ,获得积分10
7秒前
小二郎应助小垃圾采纳,获得10
7秒前
516165165发布了新的文献求助10
8秒前
8秒前
8秒前
9秒前
lyfsci完成签到,获得积分20
9秒前
友好的牛排完成签到,获得积分10
10秒前
WXHL发布了新的文献求助30
12秒前
yc发布了新的文献求助10
12秒前
12秒前
lyfsci发布了新的文献求助10
13秒前
15秒前
15秒前
fffff完成签到,获得积分10
15秒前
科研通AI5应助管理想采纳,获得10
17秒前
等待的惜海完成签到,获得积分10
19秒前
19秒前
20秒前
Lin完成签到 ,获得积分10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793698
求助须知:如何正确求助?哪些是违规求助? 3338599
关于积分的说明 10290546
捐赠科研通 3055010
什么是DOI,文献DOI怎么找? 1676285
邀请新用户注册赠送积分活动 804326
科研通“疑难数据库(出版商)”最低求助积分说明 761836