Radiomics based predictive modeling of rectal toxicity in prostate cancer patients undergoing radiotherapy: CT and MRI comparison

医学 接收机工作特性 无线电技术 放射治疗 前列腺癌 逻辑回归 磁共振成像 随机森林 放射科 前列腺 核医学 特征选择 人工智能 癌症 计算机科学 内科学
作者
Hossein Hassaninejad,Hamid Abdollahi,Iraj Abedi,Alireza Amouheidari,Mohamad Bagher Tavakoli
出处
期刊:Physical and Engineering Sciences in Medicine [Springer Nature]
卷期号:46 (4): 1353-1363 被引量:1
标识
DOI:10.1007/s13246-023-01260-5
摘要

Rectal toxicity is one of the common side effects after radiotherapy in prostate cancer patients. Radiomics is a non-invasive and low-cost method for developing models of predicting radiation toxicity that does not have the limitations of previous methods. These models have been developed using individual patients' information and have reliable and acceptable performance. This study was conducted by evaluating the radiomic features of computed tomography (CT) and magnetic resonance (MR) images and using machine learning (ML) methods to predict radiation-induced rectal toxicity.Seventy men with pathologically confirmed prostate cancer, eligible for three-dimensional radiation therapy (3DCRT) participated in this prospective trial. Rectal wall CT and MR images were used to extract first-order, shape-based, and textural features. The least absolute shrinkage and selection operator (LASSO) was used for feature selection. Classifiers such as Random Forest (RF), Decision Tree (DT), Logistic Regression (LR), and K-Nearest Neighbors (KNN) were used to create models based on radiomic, dosimetric, and clinical data alone or in combination. The area under the curve (AUC) of the receiver operating characteristic curve (ROC), accuracy, sensitivity, and specificity were used to assess each model's performance.The best outcomes were achieved by the radiomic features of MR images in conjunction with clinical and dosimetric data, with a mean of AUC: 0.79, accuracy: 77.75%, specificity: 82.15%, and sensitivity: 67%.This research showed that as radiomic signatures for predicting radiation-induced rectal toxicity, MR images outperform CT images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
太拗口哟完成签到,获得积分10
3秒前
华仔应助ZHOU采纳,获得10
3秒前
阔达斑马发布了新的文献求助200
4秒前
汉堡包应助Voskov采纳,获得10
4秒前
znlion完成签到,获得积分10
5秒前
5秒前
qiu发布了新的文献求助10
5秒前
6秒前
8秒前
Wqhao完成签到,获得积分10
9秒前
9秒前
SciGPT应助清爽的蛋挞采纳,获得10
9秒前
11秒前
莫道桑榆发布了新的文献求助10
11秒前
闪闪的乐蕊完成签到,获得积分10
12秒前
WuYiHHH发布了新的文献求助10
13秒前
sss完成签到,获得积分10
14秒前
14秒前
qiao应助柏不斜采纳,获得10
18秒前
领导范儿应助毛毛虫采纳,获得10
21秒前
24秒前
Akim应助DIngqin采纳,获得10
25秒前
26秒前
缓慢采柳发布了新的文献求助80
26秒前
活力酒窝完成签到,获得积分10
27秒前
自由水风发布了新的文献求助10
30秒前
30秒前
冷傲的冰绿完成签到,获得积分10
33秒前
CodeCraft应助无风采纳,获得10
36秒前
37秒前
37秒前
研友_n0gOKL发布了新的文献求助10
37秒前
Jenny发布了新的文献求助10
37秒前
周末万岁完成签到,获得积分10
39秒前
40秒前
打打应助尺八采纳,获得10
40秒前
41秒前
42秒前
42秒前
至秦完成签到,获得积分10
43秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Technologies supporting mass customization of apparel: A pilot project 450
Mixing the elements of mass customisation 360
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
Political Ideologies Their Origins and Impact 13th Edition 260
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3781669
求助须知:如何正确求助?哪些是违规求助? 3327234
关于积分的说明 10230111
捐赠科研通 3042093
什么是DOI,文献DOI怎么找? 1669791
邀请新用户注册赠送积分活动 799335
科研通“疑难数据库(出版商)”最低求助积分说明 758774